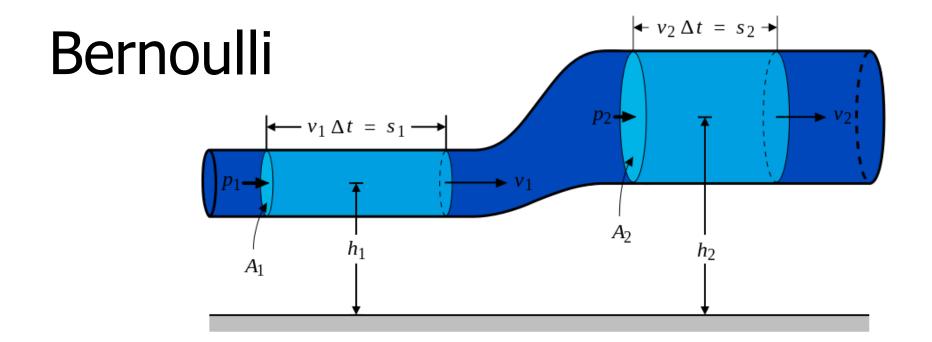
Pressions, tuyaux et accessoires



Stefano Bechis CISAO - Université de Turin Projet SIEJ-AE

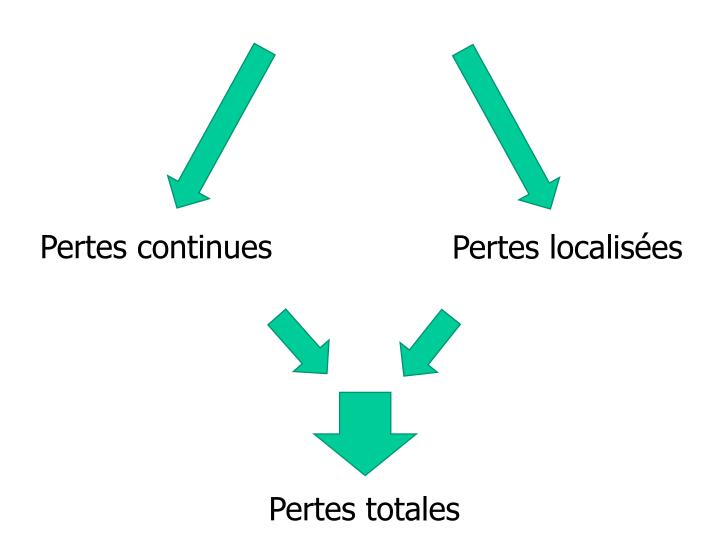
matériaux

- •PE (haute densité et basse densité) tuyaux souples, ok pour courbes
- •PVC tuyaux rigides
- •acier zinc problèmes avec humidité du sol, plus de friction

différents diamètres et résistances à la pression

$$p + \rho \frac{V^2}{2} + \rho g h = constante$$

ρ = densité


V = vitesse

g = accélération de la gravité

h = hauteur potentielle moyenne de la section

p = pression

PERTES DE CHARGE DANS LES CONDUITES EN PRESSION

PERTES CONTINUES DANS LES CONDUITES EN PRESSION

Formule de Hazen-Williams

$$J = \frac{10,675 \ Q^{1,852}}{C^{1,852} \ D^{4,8704}}$$

 $Q = \text{d\'ebit en m}^3/\text{s}$

C = coefficient de rugosité

D = diamètre intérieur de la conduite en metres

J = perte de charge en metre de hauteur par metre de longueur

PERTES CONTINUES DANS LES CONDUITES EN PRESSION

passer des pertes continues spécifiques aux pertes continues totales

$$Y = J L$$

J = perte de charge en metre de hauteur par metre de longueur

L = longueur de la conduite en metres

Y = pertes totales en metres de hauteur

ı	Perte de cl	harge J en	metre de	hauteur po	our 100 me	etres de lo	ngueur du	tuyau
	Diamètre extérieur (mm)							
	20	25	32	40	50	63	75	90
Débit (l/s)[Débit (l/s) Diamètre intérieur (mm)							
	16	21	26	34	44	55,4	66	79,2
0,25	12,0	3,1	1,1					
0,5	43,0	11,4	4,0	1,1				
1	155,0	41,0	14,5	3,9	1,1			
1,5		87,0	30,8	8,3	2,4			
2			52,4	14,2	4,0			
2,5			79,2	21,5	6,1	2,0		
3				30,0	8,6	2,8		
3,5				40,0	11,4	3,7	1,6	
4				51,2	14,6	4,7	2,0	
4,5					18,1	5,9	2,5	
5					22,0	7,2	3,1	1,3
6					30,9	10,1	4,3	1,8
7					41,1	13,4	5,7	2,3
8						17,1	7,3	3,0
9						21,3	9,1	3,7
10						25,9	11,0	4,5

VITESSE DE L'EAU DANS LES CONDUITES EN PRESSION

La vitesse de l'eau en m/s est simplement calculée comme debit en m³/s divisé par la section du tuyau en m²

En general, la vitesse de l'eau de devrait pas depasser les 2 m/s pour des tuyaux de quelques dizaine de metres, pour eviter des pertes de charge importantes

$$S = \frac{\pi D^2}{4} \qquad V = \frac{Q}{S}$$

D = diamètre intérieur de la conduite en metres

S = section du tuyau en m^2

 $Q = \text{d\'ebit en m}^3/\text{s}$

Vitesse de l'eau dans le tuyau, en m/s								
Diamètre extérieur (mm)								
	20	25	32	40	50	63	75	90
Débit (l/s)[Débit (I/s) Diamètre intérieur (mm)							
	16	21	26	34	44	55,4	66	79,2
0,25	1,2	0,7	0,5					
0,5	2,5	1,4	0,9	0,6				
1	5,0	2,9	1,9	1,1	0,7			
1,5		4,3	2,8	1,7	1,0			
2			3,8	2,2	1,3			
2,5			4,7	2,8	1,6	1,0		
3				3,3	2,0	1,2		
3,5				3,9	2,3	1,5	1,0	
4				4,4	2,6	1,7	1,2	
4,5					3,0	1,9	1,3	
5					3,3	2,1	1,5	1,0
6					3,9	2,5	1,8	1,2
7					4,6	2,9	2,0	1,4
8						3,3	2,3	1,6
9						3,7	2,6	1,8
10						4,2	2,9	2,0

PERTES LOCALISÉES DANS LES CONDUITES EN PRESSION

Ces pertes sont considérées comme si on ajoutait du tuyau à ce qui déjà existe, et on ajoutait de consequence des pertes continues. La formule de conversion localisée-continue est:

$$L = 40 \text{ k D}$$

k = facteur rélatif à l'objet qui cause la perte<math>D = diamètre intérieur de la conduite en metres<math>L = longueur de tuyau équivalent

Determination du facteur K

Désignation	Valeur K		
Entrée à angle vif	0,5		
Entrée à angle rond	0,23		
Coude long rayon 90°	0,25		
Coude long rayon 60°	0,2		
Coude long rayon 30°	0,15		
Coude standard 90°	1,5		
Coude standard 60°	1,2		
Coude standard 30°	0,9		
T en déviation	1,5		
T en passage direct	0,1		

TOTALE DES PERTES LOCALISÉES

OBJET	FACTEUR k	CALCULATION	LONGUEUR correspondante
Objet 1	k1	$L = 40 \ k1 \ D$	L1
Objet 2	k2	$L = 40 \ k2 \ D$	L2
Objet 3	k3	$L = 40 \ k3 \ D$	L3
Objet n	kn	$L = 40 \ kn \dots D$	Ln
TOTALE			L1 + L2 + L3 + Ln

PERTES TOTALES DANS LES CONDUITES EN PRESSION

$$L_{totale} = (L_{conduite} + L_{equiv. pertes localisées})$$

$$Y_{totale} = J L_{totale}$$

DONNEES POUR PROJET

hauteur en **metres** à considerer pour le projet (choix de la pompe et puissance champ photovoltaique)

$$hauteur_{totale} = h_{pompage} + Y_{totale} + P_{travail}$$

P travail exprimé en mètres de colonne d'eau (h)