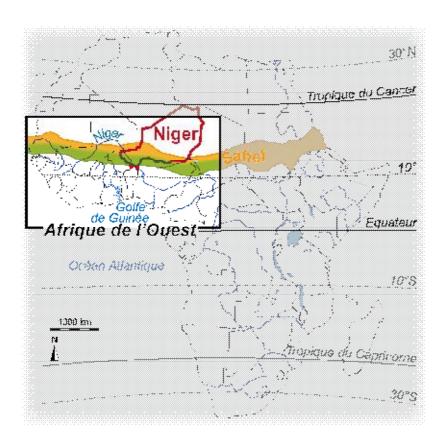
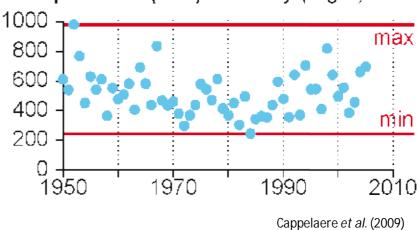
Le potentiel de séquestration de carbone des principales espèces ligneuses agroforestières dans les agrosystèmes du Niger.

Namata S, Adagoye B, Barke A, Youssifi S, Massaoudou M, Boubacar M, Amani A, <u>Issoufou HB-A</u>, Kairé M, Larwanou M, Mahamane A.

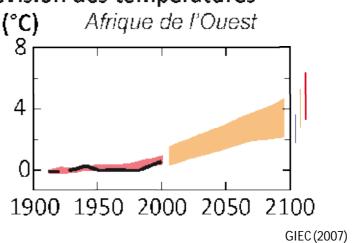
Université Dan Dicko Dankoulodo de Maradi Université Abdou Moumouni de Niamey Centre Regional AGRHYMET



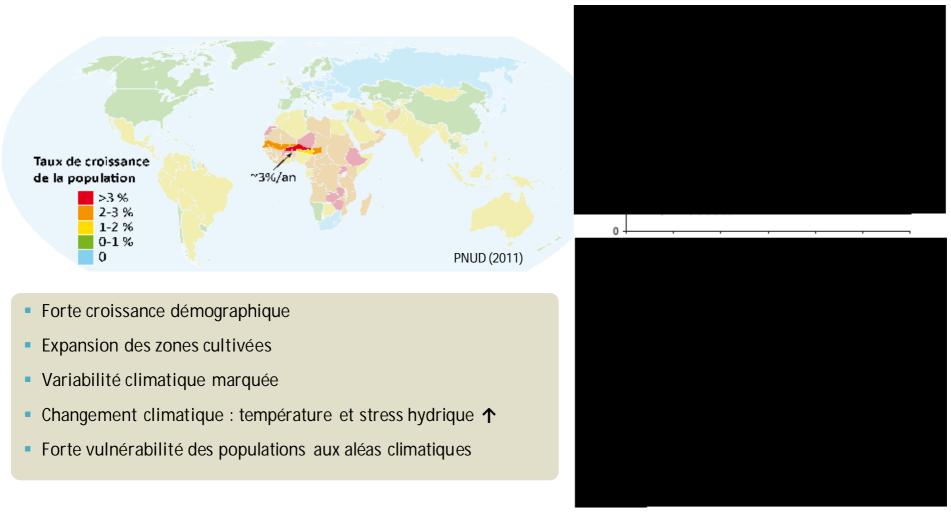
Sahel agropastoral: climat


Climat : tropical semi-aride

Précipitations : 400-700 mm/an


ETP: 2 300 mm/an

Température : ~30°C

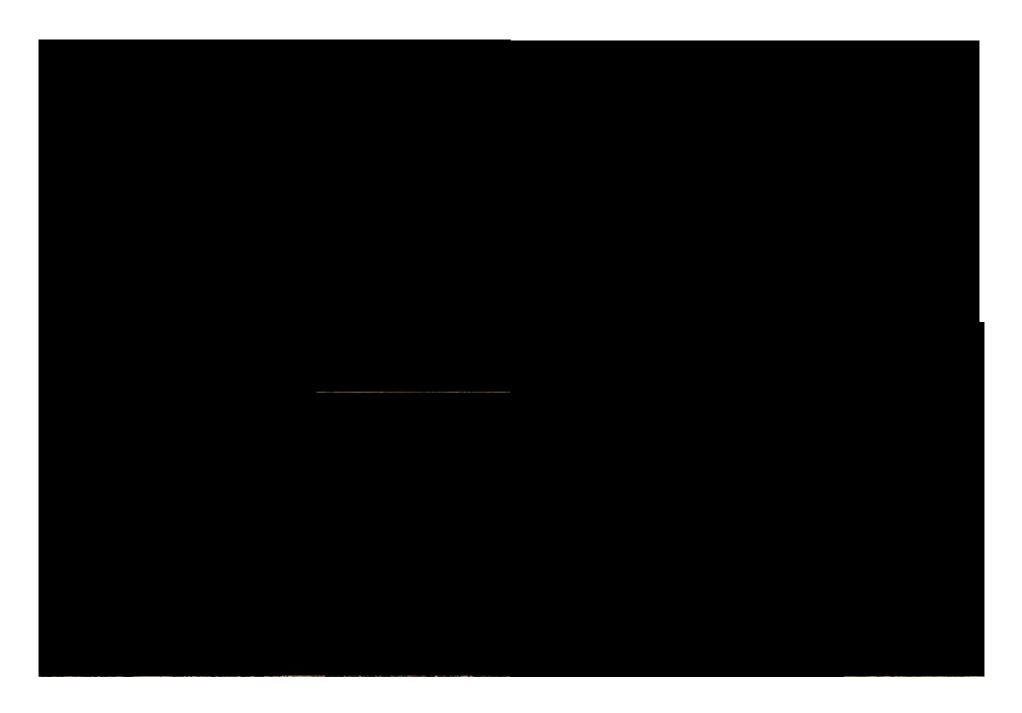

Précipitations (mm) - Niamey (Niger)

Prévision des températures

Sahel agropastoral: enjeux sociétaux

Cappelaere et al. (2009)

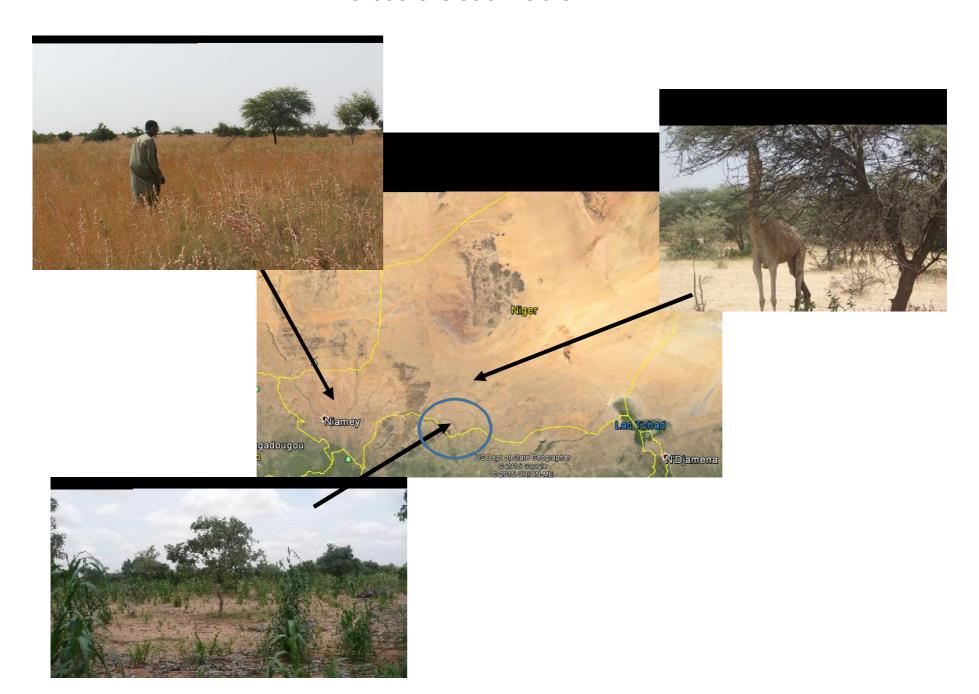
RNA, Agriculture climato-intelligente: exploitation et durabilité


L'augmentation de la densité des arbres dans les champs (50 pieds pour les espèces à grande houppe, contre 100-120 pour les espèces arbustives) a permis:

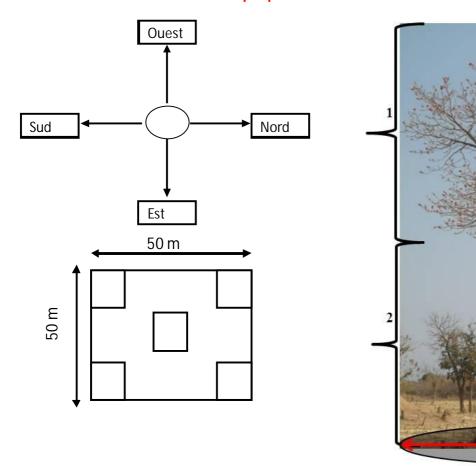
- L'inversion du phénomène de la désertification;
- La réduction du nombre de semis
- L'augmentation des rendements en grains du mil
- L'amélioration de la disponibilité de fourrage et de bois pour les ménages adoptants;
- L'accroissement des revenus des ménages.

Evaluer le potentiel ligneux et sa contribution la séquestration du carbone:

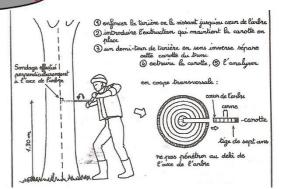
- Caractériser la structure du couvert ligneux;
- **Section** Estimer la quantité de carbone stocké par la biomasse aérienne.


RNA, Agriculture climato-intelligente: exploitation et durabilité

RNA, Agriculture climato-intelligente: exploitation et durabilité


Sites d'observation

Observations destructives et semi-destructives : paramètres dendrométriques


Densité et structure de la population

Mensuration des arbres

- 1. Houppier de l'arbre
- 2. Fût de l'arbre
- Hauteur totale de l'arbre
- 4. Mesure du fût
- 5. Mesure du DBH
- 6. Mesure du D20
- 7. Mesure du DH1
- 8. Mesure du DH2.

- La densité moyenne $N = \frac{\pi}{8.25}$ (b.a.
- La surface terrière: $G_0 = \sum_{i=1}^n \pi_i \frac{i}{2}$

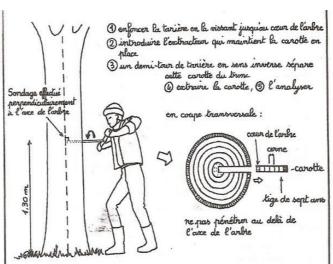
Observations destructives et semi-destructives : biomasse sèche

Des mesures on permit de palquie

is densité à l'étail annivoire (Dia

- Iŧ tau: c"numidite ⊣‰

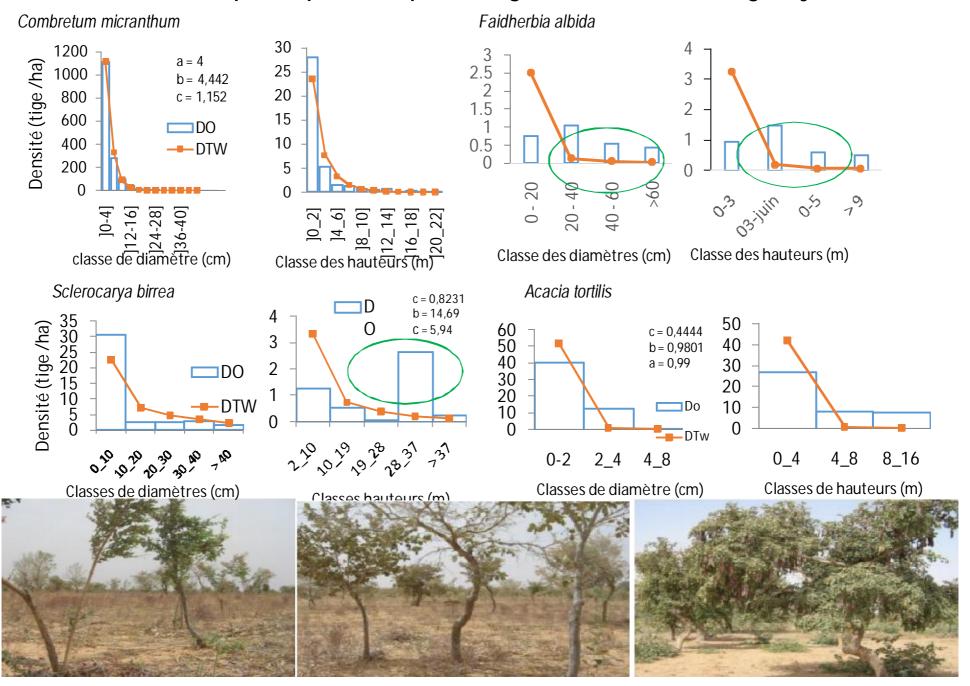
$$-\frac{w_{r_1}}{w_{r_2}} = \frac{w_{r_2}^2 - w_{r_2}}{w_{r_2}}$$


- la masse totale seche (Mt)

Multa masse totale traigne

Le rappor $\frac{M!}{M!}$ es le taux de conversion pour phadur des pumpariments ephantikomes. (Fût pranches, reuilles):

Observations destructives et semi-destructives : dendrochronologie



L'estimer la quantité de CO₂ stocké par an

Recherche des relations allométriques appropriées

Modèle		Critère de sélection des
Widdele		modèles:
Polynomiale de degré 2 :	$LnY = a' + b*InD + c*LnD^2$	•AIC;
	$LnY = a' + b*InDbh + c*LnDbh^2$	
Polynomiale de degré 3 :	$LnY = a*InD + b*In(D)^{2} + c*In(D)^{3}$	•RSE;
	LnY = $a*InDbh + b*In (Dbh)^2 + c*In (Dbh)^3$	•VIF;
Puissance :	$Y = a*D^b$	•R² ajusté;
	LnY = a' + b*InD	
	Y = a*Dbh ^b	•Biais moyen (%)
	LnY = a' + b*InDbh	
	$Y = a^*D^2H$	Y : biomasse sèche totale (kg)
	$LnY = a' + In (D^2H)$	D : diamètre à 0,2 m du sol (cm)
	$Y = a*D^bH^c$	Dbh : diamètre à 1.3m du sol (cm)
	LnY = a' + b*InD + c*InH	H: hauteur totale (m)
	Y = a*Dbh ^b H ^c	
	LnY = a' + b*InDbh + c*InH	
Linéaire:	LnY = a*InD + b*InH	
	LnY = a*InDbh + b*LnH	_

Structure des principales espèces ligneuses dans les agrosystèmes

estimation de la biomasse sèche: Modèle statistique

Espèces	Modèles	R^2	R*2	MAPE (%)	RMSE	Site
					(%)	
P. africana	$Y = 0.03(DBH)^{2.04}$	0.95	0.94	4.6	28.7	Sarkin Yamma
F. albida	$Y = 0.02(DBH)^{2.16}$	0.97	0.97	3.6	21.2	Dan Mairo
F. albida	$Y = 0.12(DBH)^{2.20}$	0.94	0.93	2.47	0.0443	Aguié
C. micranthum	$Y = 0.24(DBH)^{2.11}$		0.89	37.33	0.42	Simiri
A. raddiana	$Y = 0.03(DBH)^{2.85}$		0.87			Dakoro
S. birrea	$Y = 0.03(DBH)^{2.49}$		0.71		0.2951	Aguié

 R^2 : coefficient de détermination, R^{*2} : coefficient de détermination ajusté, MAPE: le pourcentage moyenne d'erreurs absolues et la racine carrée de l'erreur quadratique moyenne, Y: biomasse aérienne totale en kg, DBH: Diamètre à 1.30m du sol en cm.

WBE model (West et al. 1999) $M1 - Prediction: A plant's trunk diameter, D scales with its biomass, M as <math>M^{3/8}$ (thus $M \propto D^{8/3}$). $D^{8/3} = D^{2.66}$

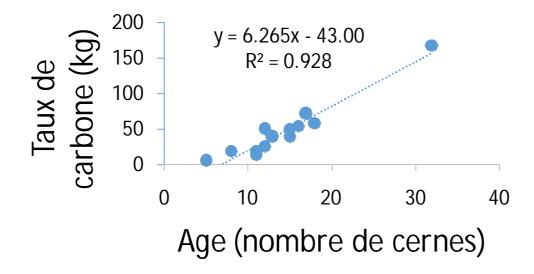
Les meilleurs modèles sont ceux qui permettent de prédire la biomasse sèche à partir des diamètres (DBH ou $D_{0.2m}$)

Comparaison avec d'autres modèles

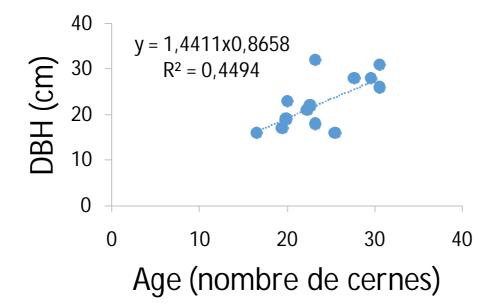
Auteurs	Modèle	
FAO. (1997)	$y = \exp(-2.134 + 2.530 \ln D)$	(l)
Mbow (2009)	$y = 0,229Dbh^{2,237}$	(II)
Chave et al. (2005)	$LnBM = -1,589 + 2,284InD + 0,129InD^2 - 0,0197InD^3$ LnBM = -1,667 + 2,510InD	(II3) (II5)

Modèles	Biais (%)	Probabilité
Chave 2005 II.3	-59,27	0,00
Chave 2005 II.5	-59,43	0,00
Mbow 2009	- 0,80	0,95
FAO 1997	-5,35	0,98
Modèle M2	-2,42	0,62

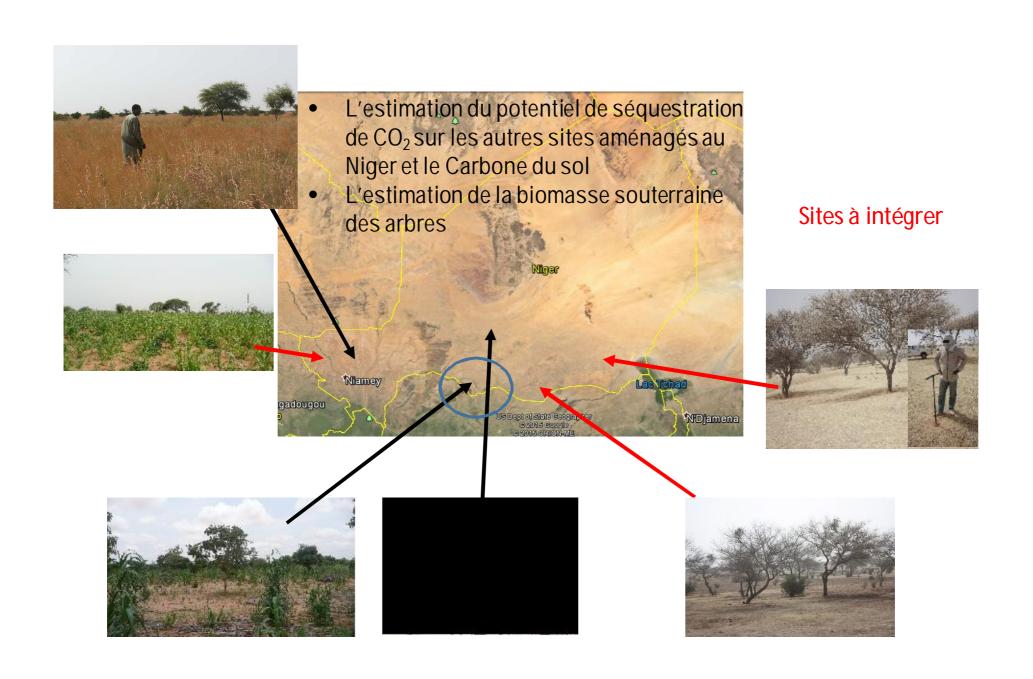
Biais moyen (%) et la probabilité pour chaque modèle


Quantité de carbone par groupement des végétaux (Kg/ha)

Groupement		Quantité de carbone kg / ha
G1	C. glutinosum et Acacia nilotica	4200
G2	P. reticulatum et Hyphaene thebaica	1400
G3	Sclerocarya birrea et Guiera senegalensis	4300
G4	C. micranthum et Boscia senegalensis	2000


Zone aride: 330 kg/ha (700-1400 kg/ha) (Luedeling & Neufeldt, 2012)

Variation de carbone séquestré en fonction de l'âge de l'arbre


F. albida

Perspectives

