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ABSTRACT

In sub-Saharan Africa, with its high rainfall variability and limited irrigation options, the crop planting date is

a crucial tactical decision for farmers and therefore a major concern in agricultural decision making. To support

decision making in rainfed agriculture, a new approach has been developed to optimize crop planting date. The

General Large-Area Model for Annual Crops (GLAM) has been used for the first time to simulate maize yields in

West Africa. It is used in combination with fuzzy logic rules to give more flexibility in crop planting date com-

putation when compared with binary logic methods. A genetic algorithm is applied to calibrate the cropmodel and

to optimize the planting dates at the end. The process for optimizing planting dates results in an ensemble of

optimized planting rules. This principle of ensemble members leads to a time window of optimized planting dates

for a single year and thereby potentially increases the willingness of farmers to adopt this approach. The optimized

planting date (OPD) approach is compared with two well-established methods in sub-Saharan Africa. The results

suggest earlier planting dates across Burkina Faso, ranging from 10 to 20 days for the northern and central part and

less than 10 days for the southern part. With respect to the potential yields, the OPD approach indicates that an

average increase in maize potential yield of around 20% could be obtained in water-limited regions in Burkina

Faso. The implementation of the presented approach in agricultural decision support is expected to have the

potential to improve agricultural risk management in these regions dominated by rainfed agriculture and char-

acterized by high rainfall variability.

1. Introduction

Rainfed agriculture in sub-Saharan Africa (SSA) is

characterized by prolonged dry spells, droughts, and low

inputs of manures, chemical fertilizers, and insecticides.

Farmers still suffer from low productivity. Nevertheless,

this agricultural system remains the dominant source of
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staple food production and the livelihood foundation for

SSA countries. Several studies addressing the specific

agricultural problems have shown that SSA is a water-

scarce region (Challinor et al. 2007; Roudier et al. 2011;

Biazin et al. 2012), where farmers have to cope with high

rainfall variability. Different soil and water management

techniques have been developed and promoted through-

out SSA countries to optimize water consumption by

plants (Rockstrom et al. 2002; Kabor�e and Reij 2004).

However, with prolonged dry spells at the beginning of

the rainy season, the risk of resowing and crop failures

during the first stage of plant development is still a major

concern in smallholder farming systems in SSA. Conse-

quently, strategic agricultural decisions such as planting

dates help reduce the need for crop resowing and crop

failure and are, therefore, a key element in agricultural

decision support. For farmers in SSA, crop planting date

estimation, which is closely linked to the onset of the

rainy season, is an important tactical operation as it de-

termines the length of the plant growing period for the

ongoing agricultural season.Accordingly, it is also related

to the choice of crop and cultivar to plant.

Various definitions of the onset of the rainy season

(ORS) in relation to the crop growing season have

been developed for water-limited areas. Among them,

rainfall-based approaches have been developed and are

currently in use in SSA (e.g., Stern et al. 1981; Sivakumar

1988, 1990; Dodd and Jolliffe 2001; Chamberlin and

Diop 2003; Laux et al. 2008). For these methods, rainfall

amounts and wet- and dry-spell occurrences at the be-

ginning of rainy season have been key variables in de-

riving the ORS and therefore suitable planting dates in

SSA (Ati et al. 2002; Laux et al. 2008). Rainfall-based

approaches are not crop specific, since information about

crop type and phenology is not explicitly involved. But,

they can be easily implemented and used for operational

agricultural decision support.

With the increased development of process-based crop

models in agricultural impact studies, new crop-specific

approaches have been developed to estimate crop planting

dates. These approaches have beenused either at plot scale

or regional scale and can be subdivided into two groups.

The first group consists of methods using only crop

models to derive suitable planting dates. In this group, a

crop yield optimization method is required (e.g., Stehfest

et al. 2007). Depending on the crop model and the opti-

mization method, this approach can be computationally

time demanding. To overcome this issue, specific as-

sumptions are usually made. For instance, Folberth et al.

(2012) estimated crop planting dates by employing a

crop model at a monthly or weekly time step. According

to the region, they limited the planting date computation

period by using a reported earliest and latest planting

date.Although a timewindowof 1month for crop planting

is valuable in general, it is not favorable for regions in SSA

where the growing season lasts only 3 months. In this

first group, in addition to the high demand in computing

time, crop models require a significant amount of input

data. Therefore, this is a limitation for crop simulation,

particularly in the data-scarce region of SSA.

The second group consists of a combination of crop

models and rainfall distribution characteristics (e.g.,

Laux et al. 2010). In this approach, the first step is to

derive planting dates that fulfill specific agronomical

criterions using rainfall information only. Then, the re-

sulting planting dates are used as input into a cropmodel

to derive optimized planting rules by applying a suitable

objective function and an optimization algorithm. This

approach reduces significantly the required computa-

tion time and can be used to improve rainfall-based

methods (Laux et al. 2010). This latter approach may

open a new avenue in planting date estimates, since it

can be used to derive crop and location-specific planting

dates. However, determining the appropriate agro-

meteorological criteria to derive planting dates and the

application of optimization methods to support agri-

cultural decision making remain challenges.

This study fits into the second group. The research

question is how to use crop planting date as an agricul-

tural management strategy to support agricultural de-

cisionmaking in SSA. This research question is addressed

by an approach aimed at optimizing crop and location-

specific planting dates. For this purpose, fuzzy logic–

based planting rules in combination with a large-scale

crop model have been used. As a staple crop in Burkina

Faso (Janin 2010), maize has been chosen as the target

crop for simulation in this study.

The article is composed of three main parts. The first

part deals with the study area, the input data, data

processing, and the applied cropmodel [i.e., theGeneral

Large-Area Model for Annual Crops (GLAM)]. The

second part deals with calibration of GLAM and the

maize planting date optimization processes. The third

section shows the results, followed by a discussion and

our conclusions.

2. Study area

Burkina Faso (BF) is part of the West African Sahel-

ian and Sudanian zones. It is a landlocked country

stretching across 274 200 km2 and lies between 98 and
15.58N and between 68W and 38E (Fig. 1a). The country

is mainly flat, with a mean altitude of about 300m

(Sivakumar and Gnoumou 1987). Approximately 90%

of the population in BF lives in rural areas where rainfed

crop production is the major source of food and income
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(Badini et al. 1987). Themain crops are sorghum (Sorghum

bicolor), millet (Panicum sp.), and maize (Zea mays L.).

The climate of BF is characterized by two distinct

seasons: a rainy season and a dry season. The dry season

ranges from November to April and the rainy season

ranges fromMay to October. During the dry season, the

country is influenced by the Saharan anticyclone, which

causes a flux of dry and cool air, the so-called Harmattan,

over the country. The highest temperatures occur mainly

in April–Maywhile the coolest temperatures occurmainly

in December–January (Sivakumar andGnoumou 1987).

At large scale, the rainy season is driven by the anomalies

of the sea surface temperature (SST) in the tropical

Pacific and Atlantic Oceans (e.g., Janicot et al. 1998;

FIG. 1. (a) Mean annual precipitation (1971–2010) and rain gauge locations and (b) position of the

running 30-yr mean isohyets in the study area. The insets show the location of BF within Africa.

600 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 53



Ward 1998). At regional scale, the rainfall variability

across the country is influenced by the north–south

fluctuation of the intertropical convergence zone associ-

ated with the West African monsoon (Sultan and Janicot

2000).

To capture rainfall variability in the study area, ob-

served daily rainfall data provided by the Burkina Faso

General Directorate of Meteorology (DGM) have been

used. As shown in Fig. 1, the rainfall variability over the

study area is great both spatially and temporally and is

considered to be one of the most limiting factors in ag-

riculture. On different time scales, a southward shifting

of isohyets can be observed (Fig. 1b). The north–south

rainfall gradient is more pronounced if compared with

the east–west rainfall gradient. In Burkina Faso the

mean annual rainfall decreases frommore than 1100mm

in the southern part of the country to less than 300mm in

the northern part (Fig. 1a).

The mean temperature of the wet season has been

estimated to range between 208 and 368C and decreases

from north to south across the country (Sivakumar and

Gnoumou 1987). The agroecological zones match with

the north–south distribution of the rainfall. The inter-

annual and intraseasonal variability of rainfall is one of

the major limiting factors of rainfed crop production in

Burkina Faso.

3. Materials and methods

a. Climate data

The large area process–based model for annual crops

(GLAM) requires daily weather data, mainly precipita-

tion, mean temperature, and solar radiation (Challinor

et al. 2004). Two sources of data have been used within

the context of this study. Daily precipitation data from

141 rain gauges (Fig. 1a) have been provided by the

DGM for a time series of 31 yr (1980–2010). These

precipitation data have been gridded at a resolution of

0.758 3 0.758 (i.e., 51 grid points for the study area) using

ordinary kriging (OK). The OK technique is one of the

most commonly used methods for interpolation. In this

study, the number of rain gauges (141) was assumed to

be acceptable for 0.758 3 0.758 gridcell interpolation,

using OK. The anisotropy of rainfall variability was well

captured. Figure 2 illustrates the gridded mean annual

precipitation (1980–2010) (Fig. 2a) as well as the error

map (Fig. 2b).

For the study domain, European Centre for Medium-

RangeWeather Forecasts (ECMWF) InterimRe-Analysis

(ERA-Interim) data (Dee et al. 2011) at a resolution

of 0.758 3 0.758 for minimum and maximum temper-

atures at 2m above the surface and solar incoming

shortwave radiation were retrieved from the ECMWF

archive (http://data-portal.ecmwf.int/data/d/interim_

daily/). We retrieved daily data from 1 January 1980 until

31 December 2010. A preprocessing of the ERA-Interim

data was performed to fit the format, units, and time scale

required by GLAM.

b. Soil data

Gridded soil types and their hydrological properties

(soil water content at saturation and soil water content

at field capacity, soil water content at the wilting point)

have been derived from the Harmonized World Soil

Data (HWSD) dataset in combination with ArcInfo and

a soil water content computation algorithm. First, based

on the climate data grid coordinates for the target area,

the matching soil mapping unit was derived using a geo-

graphic information system (ArcInfo). Then, the domi-

nant soil type for each grid location, and its associated soil

properties, are summarized using the tabular soil data-

base from HWSD (FAO 1991). Finally, the soil water

FIG. 2. (a)Griddedmean annual rainfall (1980–2010) and (b) gridded

RMSE. RMSE between annual rainfall of any station and its corre-

sponding grid cell is calculated and interpolated using OK.
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content parameters were estimated following an algo-

rithm designed for the computation of soil water limits

(Ritchie et al. 1999; Suleiman and Ritchie 2001).

c. Crop yield data

Province-level maize yields (kg ha21) over 27yr (1984–

2010) from all 45 provinces in Burkina Faso have been

collected. Two datasets of maize yield have been pro-

vided by the AGRHYMET Regional Centre and the

BF National Agricultural Statistic Division. These da-

tasets contain annual rainfed crop production and esti-

mated land area allocated to grow maize. The country’s

database of crop production and estimated land area

originate from survey campaigns with farmers every

year during harvest time. Yearly provincial crop yields

(kg ha21) have been computed from both crop pro-

duction data and the estimated land area. To identify

a reliable period for the calibration of the crop model,

the two datasets were analyzed in terms of similarity.

This is done for each province and each year separately.

The ratio of missing data has also been evaluated for

each provincial dataset. Based on the coincidence of

both datasets and the experiences from the data pro-

viders, the period 2000–10 has been selected and used

in this study. The differences between the two datasets

were less than 5% with no missing data for the period

2000–10. Further, the province-level maize yield data

from 2000 to 2010 have been transformed into gridded

data at a resolution of 0.758 3 0.758 to fit the weather

and soil data grids. As no significant trends in crop yield

(e.g., imposed by ever-increasing technological de-

velopment) could be detected for the period 2000–10,

no detrending has been applied. The gridded crop yield

has been calculated by using a composite weighted

average for all provinces that share the same grid. The

land areas of the concerned provinces have been used

as weights:

Ygrid (kg ha
21)5

�
n

i51

wi 3Ydistrict(i) (kg ha
21)

�
n

i51

wi

, (1)

where Ygrid (kg ha
21) is the gridded crop yield, Ydistrict(i)

is the crop yield in district i,wi is the fraction of land area

of district i within the grid cell, and n is the number of

grid cells that share the land area of the grid cell.

d. Large-scale crop model GLAM

Spatiotemporal variability in crop yields is associated

with climate variability. For the first studies attempting

to link climate to agriculture outputs, statistical tools

were used to derive quantitative or qualitative rela-

tionships between crop production and climate variables

such as precipitation and temperature. Nowadays, ef-

forts are being made to describe the dynamic relation-

ship between crop production and climate by using

process-based crop models (Robert and Bruce 1998;

Wallach et al. 2006). Most crop models have been de-

signed to be used at plot scale and therefore specific

assumptions have to be made to upscale results to larger

scales (Hoogenboom 2000). In recent years, large-scale

process-based crop models are increasingly designed

and being used in the analysis of regional agricultural

production systems (e.g., Moen et al. 1994; Brock and

Brink 1996; Challinor et al. 2005; Tao et al. 2009). In this

study, GLAM (Challinor et al. 2004) has been used. The

GLAM has been designed to simulate the impact of

climate on crop yield or biomass. As a process-based

crop model, it simulates crop growth and development

with daily time step. This crop model operates on spatial

scales commensurate with those of global and regional

climate models (Challinor et al. 2004). It can be used to

assess the impacts of climate variability and change on

annual crop yields. GLAM was initially calibrated and

validated for groundnut production in India with the

potential to be applied to a large range of crops, as the

crop growth processes are generic. In water-limited crop

production regions, GLAM has been shown to be able

to capture the strong relationship between weather and

crop production (Challinor et al. 2004). To simulate a

crop growing season, GLAM requires mainly daily time

series of precipitation, temperature, and radiation as

weather inputs. In GLAM, the accumulated above-

ground biomass is converted into crop yield using the

harvest index when the harvest time is reached. The

simulated daily transpiration and the crop transpiration

efficiency parameter are used to compute the daily bio-

mass accumulation from crop emergence to maturity.

A harvest index rate parameter is used to increase the

harvest index from 0 to a maximum value during the

grain-filling and maturity stages.

In GLAM, the yield responses to, for example, fer-

tilizer, plant population density, and pest and diseases

separately, have not been explicitly formulated. A

unique parameter called yield gap parameter (YGP),

which is location specific, is used to take account of yield

losses due to the mean effects of nutrient deficiency,

nonoptimal management, pest and diseases incidence.

For any specific location, the YGP is calculated by

minimizing the root-mean-square error (RMSE) be-

tween simulated yield and observed yield using all po-

tential values of YGP. For more details on the dynamic

processes in GLAM, the reader is referred to Challinor

et al. (2004).
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In this study, GLAM has been calibrated for the first

time for maize growing in Burkina Faso and is used to

derive optimized maize planting dates.

e. GLAM calibration

GLAMhas been calibrated for maize in Burkina Faso

using a genetic algorithm optimization method. Genetic

algorithms (GAs) were first introduced by Holland

(1975). GAs are heuristic methods inspired by natural

evolution. They mimic key operators of natural evolu-

tion such as genetic recombination (crossover) and

mutation. These algorithms encode a potential solution

to a specific problem in a simple chromosome-like data

structure and apply recombination and mutation oper-

ators to these structures so as to preserve critical in-

formation. For instance, a string of bits, encoding each

parameter of a potential solution can be seen as a gene in

a chromosome while the concatenation of such strings is

comparable to a chromosome in genetics.

The capability of GAs to approach (and eventually to

find) the global optimum in an optimization problem is

based on the choice of reproduction operators, their

appropriate representation, and the formulation of the

objective function [the so-called fitness function;

Sivanandam and Deepa (2008)]. The latter is specific to

the problem that one is dealing with in terms of the

objective to be reached.

The first step in the implementation of any genetic

algorithm is to generate an initial population that con-

sists of random selections of potential solutions in the

parameter space. In this study, a binary encoding is used

to encode each member of the population as a binary

string of length p 3 2n, where p denotes the number of

parameters to be calibrated in the GLAMand n denotes

the number of bits (2n is the number of possible values

for a given parameter) (Carroll 1996a,b).

In GLAM, a total number of 32 parameters have been

calibrated for maize for 85–100 days of a growing period,

representing themost dominant group ofmaize cultivars

in BF (Sanon and Demb�el�e 2001): phenology parame-

ters [base temperature, optimum temperature, maximum

temperature, growing degree days (GDDs)], biomass

parameters [temperature efficiency (TE), harvest index,

maximum value of normalized TE], evapotranspiration

parameters (evaporation coefficient, maximum value of

potential transpiration, vapor pressure deficit, soil heat

flux coefficient), leaf area index (LAI) parameters (crit-

ical LAI, daily maximum value of LAI, extinction co-

efficient, soil water fraction for reduced LAI growth),

drainage and uptake parameters (uptake diffusion co-

efficient, root length density), and soil parameters (albedo,

depth of soil over which evaporation occurs, extractable

front velocity).

The GDD range for each crop development stage is

crucial for the simulation, since the crop phenology and

growing period heavily depend on it. To deal with the

GDD variability in the target area, the 85–100-day

growing period of themaize crop have been transformed

into GDDs considering four maize growth stages (veg-

etative growth, flowering, grain filling, and maturity).

The range of GDDs for each development stage has

been computed using daily mean temperatures for the

target area and crop phenological base temperatures

TB. We have chosen TB to be in the range of 88–148C
(Birch et al. 1998). The GDDs have been calculated for

each grid cell and for each crop development stage. Then,

the computation of the GDD mean value (GDDm) and

GDD standard deviation (GDDstd) for each develop-

ment stage is performed over the target area. Finally,

assuming a normal distribution, a GDD ranging from

GDDm2 23GDDstd toGDDm1 23GDDstd is set for

each development stage of maize crop. For the other

parameters, the selected range has been taken from

GLAM’s generic parameters file (http:/www.see.leeds.

ac.uk/research/icas/climate_change/glam/glam.html) and

from the literature (Carberry et al. 1989; Muchow and

Carberry 1989; Carberry 1991; Birch 1996; Maddonni

and Otegui 1996; Birch et al. 1998; Rasse et al. 2000;

Sanon and Demb�el�e 2001; Sanon et al. 2002).

In addition to the 32 parameters, planting dates are

needed to perform crop simulations with GLAM.

Planting dates can be set for the simulation in two dif-

ferent ways. Either observed planting dates or computed

planting dates can be used as input into GLAM. Ob-

served planting date data are usually not available for

large-scale analyses in SSA. Therefore, estimated plant-

ing dates have been used. To estimate planting dates, the

GLAM intrinsic function can be employed. For GLAM

calibration purposes, the GLAM intrinsic function

has been replaced by a crop-specific soil water balance

module for planting date computation. This water bal-

ance module uses the water balance module of GLAM.

It computes daily soil water balance for the first vege-

tative growth phase of the maize crop, considering daily

rainfall, soil characteristics, and simulated maize daily

actual evapotranspiration. After 1 May, the crop-specific

soil water balance has been computed on a daily basis.

The estimated planting date is set to be the first day be-

tween 1May and before 31 July for which the crop-specific

soil water balance is greater than zero for each day in the

following 30 days. The planting date is set to 31 July if no

planting date is found in the aforementioned period.

This soil water balance algorithm should mimic the

traditional planting behavior of smallholder farmers in

SSA. The resulting planting dates are not optimal in

terms of crop yield. Indeed, they have the potential to

MARCH 2014 WAONGO ET AL . 603

http:/www.see.leeds.ac.uk/research/icas/climate_change/glam/glam.html
http:/www.see.leeds.ac.uk/research/icas/climate_change/glam/glam.html


avoid crop failure and not to reach optimum crop yield.

These dates are used as planting dates for the calibration

of GLAM.

The different steps in the process of GLAM calibra-

tion for maize crops using a GA have been summarized

in Fig. 3. For optimization purposes, the objective func-

tion in the GA has been formulated in a way such that it

captures the degree of coincidence between simulated

and observed maize yields for the calibration period. In

addition, the variability in YGP is part of the objective

function. For a specific location, we assumed that the best

setting of parameters in GLAM for the target grid cell

should result in a high positive correlation r, a lowRMSE,

and low variability in YGP. A k-fold cross validation is

used to overcome the limited size of the calibration pe-

riod (2000–11). To ensure the robustness of the calibrated

parameters and to reduce the computation time, the

value of k is set to 5 in this study. In the process of

fivefold cross validation, the 11-yr-period data are

randomly partitioned into five complementary subsets

(one subset of 3 yr and four subsets of 2 yr). Out of five,

four randomly chosen subsets are used as training sets

and the remaining subset is used for validation. Fifty

loops (10 initializations 3 5 combinations of training–

validation sets) of cross validation are performed. Finally,

an average over loops is used to compute r and RMSE.

The minimum and the maximum of YGP over all loops

are retained. Thus, for each setting of parameters in

GLAM, a fitness value is computed after the fivefold

cross validation. The highest fitness value should corre-

spond to the best set of parameters. To fulfill these re-

quirements, the fitness function is defined as

f ()5 r(12 rRMSE)

�
YGPmin

YGPmax

�
, (2)

where r denotes the Pearson correlation coefficient

between the simulated and observed yields, rRMSE is

the relative root-mean-square error, and YGPmin and

YGPmax denote the minimum and maximum values of

the yield gap parameter, respectively.

f. Fuzzy logic approach for crop planting date
estimation

The term fuzzy logic emerged in the development of

the theory of fuzzy sets by Zadeh (1965). It refers to the

principles and methods of representing knowledge that

employs intermediate truth values. Fuzzy logic provides

a way to represent subjective attributes of real-world

problems in computing (Belohlavek and Klir 2011).

Optimized maize crop planting dates have been de-

rived from rainfall time series data using a fuzzy logic

approach in combination withGA. For agronomists, wet

conditions are crucial after the planting date. They are

necessary to ensure crop emergence and an optimum

first-stage development. During the first stage of crop

development, the root system of the crop is still not

well developed enough to cope with longer dry spells.

Therefore, crop failure and resowingmight be avoided if

wet conditions during the first vegetative growth stage

occur. The rainfall-based estimation of planting dates

for agricultural decision support uses threshold values

for relevant agrometeorological variables such as rain-

fall amount and the number of wet- and dry-spell lengths,

for a given period. However, the uncertainties due to the

limited number of observations andmeasurement errors

have to be taken into account when dealing with hy-

drometeorological variables. To cope with rainfall data

uncertainties and the vagueness around the explicit value

FIG. 3. Flowchart of GLAM calibration for the maize crop

using a GA.
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of these variables, a fuzzy logic–based approach has

been used to compute optimized planting dates and for

improved crop production (Laux et al. 2010, 2008). This

approach uses the concept of fuzzy logic membership

functions to deal with the cumulative rainfall amount

and the wet- and dry-spell lengths.

Following Laux et al. (2008, 2010), three fuzzy

functions g1, g2, and g3 for cumulative rainfall amount

within a 5-day spell, the number of rainy days within

a 5-day spell, and the longest dry-spell length in the next

30 days after the planting day, respectively, have been

defined (Fig. 4). The variables a1 and a2 of the mem-

bership g1 vary between 10 and 30mm, b1 and b2 of the

membership g2 vary between 1 and 5 days, and c1 and c2
of membership g3 vary between 5 and 10 days. The

defuzzification parameter k varies between 0.1 and 1.

Using a list of if–then clauses, g1 is set to 0 if the 5-day

cumulative rainfall is less than a1mm and 1 if the 5-day

cumulative rainfall is greater or equal to a2mm. For

a 5-day cumulative rainfall ranging between a1 and a2, the

value of g1 is obtained by a linear interpolation between

a1 and a2. Similarly, g2 and g3 are computed based on

their specific parameters.

The GA, coupled with this fuzzy logic approach and

GLAM, calibrated for maize, has been used to derive 10

ensemble members that are composed of optimized sets

of fuzzy parameters (a1, a2, b1, b2, c1, c2, k). The flow-

chart of the respective process is illustrated in Fig. 5.

The optimized fuzzy parameters are crop and location

specific. For the optimization process, a fitness function

is defined to discriminate among the different sets of

parameters in terms of performance. The objective is to

optimize planting dates so that they increase crop pro-

duction and also reduce the coefficient of variation

(CV). Therefore, the fitness function is defined as

f ()5
1

CV
. (3)

For a specific location, the optimization process yielded

a set of optimum fuzzy parameters. From this set, an

ensemble of 10 members is retained. The 10 ensemble

members consist of parameter sets, which result in high

crop yields and a low variability of simulated crop yield

(i.e., high fitness) over time. Using a time series of rainfall

of a specific grid cell with the ensemble of optimized fuzzy

parameter sets, an ensemble of optimized planting dates

for maize has been computed by applying the proposed

fuzzy logic approach algorithm. The flowchart in Fig. 6

illustrates the individual steps.

g. Evaluation of planting dates

Optimized planting dates (OPDs) are computed using

the derived optimum fuzzy parameters in combination

FIG. 4. Fuzzy logic memberships of (top) rainfall amount, (middle)

number of wet days, and (bottom) dry-spell length.
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with daily rainfall time series. To evaluate the efficiency

of the OPDs, two well-known and regionally established

approaches have been used to calculate planting dates

for comparison. These two approaches are as follow:

(i) Diallo (2001)—the date after 1 May, when at least

20mm of rainfall accumulates over three consecu-

tive days and when no dry spell of more than 10 days

occurs within the next 30 days; this approach is

currently used at the AGRHYMET Regional Cen-

tre in Niamey, Niger; and

(ii) Dodd and Jolliffe (2001)—the first day of a spell of 5

days in which at least 25mm of rain falls, on condition

that no dry period of more than 7 days occurs in the

following 30 days; this approach is currently in

operation as an agricultural decision support tool at

theBurkinaFasoDirectorateGeneral ofMeteorology.

A deviation of planting dates and a relative deviation of

maize mean yield are used to compare the different

approaches. The deviation of planting date (DPD) is

calculated as

DPD(days)5OPD2PD , (4)

where PD is the planting date based on either Diallo

(2001) or Dodd and Jolliffe (2001).

The relative deviation of the mean maize yields

(Dyield) is given as

Dyield(%)5 1003
(YIELDOPD2YIELD)

YIELD
, (5)

where YIELD is the mean yield either based on Diallo

(2001) or Dodd and Jolliffe (2001), We denote the mean

yield based on OPD as YIELDOPD.

4. Results

a. GLAM calibration for maize in Burkina Faso

Since GLAM has not yet been calibrated for maize in

West Africa, a GA-based calibration has been per-

formed. A summary of the range of variability of cali-

brated parameters in the study area is presented in

appendix A. The performance of the calibration has

been evaluated using Pearson’s correlation coefficient

(r) and the RMSE between the simulated and observed

yields over the period 2000–10. Figure 7a depicts the

location-specific r over Burkina Faso. The minimum r

is 0.6, while r is larger than 0.75 for 80% of all locations

(41 of 51 grid cells). In the majority of locations, the

calibrated GLAM is able to capture 50% (R2 5 0.5) of

the linear variability of the maize crop yield for the pe-

riod 2000–10. At the significance level a 5 0.05, the r

values are statistically significant (Fig. 7b) for all loca-

tions. Figure 7a reveals a distinct homogeneous high

correlation (r $ 0.8) in the southwest of BF. The

rRMSE, shown in Fig. 7c is less than 50% for all loca-

tions. The simulated maize crop yield in the majority of

locations deviates from the respective observed maize

crop yield by less than 25% and even less in the south-

west of BF. According to Fig. 7, it is evident that the

performance of the calibrated GLAM simulation for

maize clearly depends on the specific location.

b. Maize-optimized planting dates and yield

A 10-member ensemble of fuzzy logic parameter sets

is used to derive OPDs over the period 1980–2010. The

FIG. 5. Flowchart of planting date optimization using a GA.
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ensemble mean values of the fuzzy logic parameters are

presented in appendix B. The results shown in Fig. 8

depict (a) the mean OPD (OPD) and (b) the standard

deviation of OPD (sOPD) for a sample of 310 (10

members3 31 yr) optimized planting dates for each grid

cell. Between 7 May and 5 July OPDs vary across the

country following a north–south gradient. In general,

the earliest OPDs occur in May in the southern part of

BF, whereas the latest OPDs occur in June–July in the

northern part of the country. Following a similar spatial

pattern, sOPD varies between 2 and 18 days. The vari-

ability of OPDs is greater in the northern than in the

southern parts of the country.

The OPDs have been used as input in GLAM to

simulate maize yield. Figure 8c shows the spatial distri-

bution of mean maize yield over the period 1980–2010.

The mean yield varies between 500 and 3000 kg ha21

with the highest (lowest) yields in the southernmost

(northernmost) parts of BF. The highest simulatedmean

yields can be found in southwestern Burkina Faso,

FIG. 6. Flowchart of planting date computation based on daily rainfall. The box spanning the period between 1 May and 31 Jul represents

the potential crop planting window within the rainy season (1 May–31 Oct) in SSA.
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whereas yields are less than 2000 kg ha21 for the central

and northern parts of the country.

c. Comparative analysis of planting date approaches

Planting dates and resulting simulated maize yields

are computed for the approaches of Diallo (2001) and

Dodd and Jolliffe (2001), and then compared to the

OPD approach. On average, the deviation in planting

dates between theOPD approach and the approaches of

Diallo (2001) and Dodd and Jolliffe (2001) varies be-

tween220 and112 days for bothDiallo (2001) (Fig. 9a)

and Dodd and Jolliffe (2001) (Fig. 9b). The lowest

(highest) deviation magnitude is mainly located in the

southwestern (northern) part of BF. In general, the OPD

approach yielded the earliest planting dates if compared

to the planting dates computed by the approaches of

Diallo (2001) and Dodd and Jolliffe (2001).

FIG. 7. Performancemeasures of GLAMcalibration: (a) Pearson

correlation coefficient between observed and simulatedmaize crop

yield, (b) p value of Pearson’s correlation coefficient, and (c) rel-

ative RMSE between observed and simulated maize yields.

FIG. 8. Maize OPDs and simulated maize yield in BF for the pe-

riod 1980–2010: (a) mean OPDs, (b) standard deviation of OPDs,

and (c) mean simulated maize yield using OPDs.
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The deviation of maize potential yield ranges be-

tween 210% and 160% while positive values prevail

(Figs. 9c and 9d). Except for the southern part, the po-

tential yield obtained by OPDs results in an increase of

at least 10% in mean yield relative to those obtained by

Diallo (2001) and Dodd and Jolliffe (2001). For the

southern part of the country, however, this increase in

mean yield is less pronounced.

5. Discussion and conclusions

An approach to objectively derive crop planting dates

is presented and applied for the first time to maize cul-

tivation inWest Africa. The approach accounts for crop-

specific meteorological and soil requirements during the

whole growing period. The results show that the opti-

mized planting dates generally follow the prevailing

north–south gradient of rainfall with earlier (later)

planting in the south (north). This gives evidence that

planting dates depend strongly on location. This finding

is in agreement with studies of Kniveton et al. (2009) and

Laux et al. (2010), who account for local and regional

differences, respectively. The OPD approach is similar

to the approach of Laux et al. (2010). Instead of using

a crop model designed to work on a local scale, the re-

gional cropmodel GLAM is used.A genetic algorithm is

used to derive robust planting rules at a regional scale,

which significantly reduces the required iterations, and

thereby computing time.

For SSA, several methods of estimating the onset of

the rainy season are in operation, giving recommenda-

tions for planting dates. These approaches are usually

applied at the local scale. At the BF National Meteo-

rological Services and the AGRHYMET Regional

Centre, the approaches of Diallo (2001) and Dodd and

Jolliffe (2001), which are regionally adapted versions

of Stern et al. (1981, 1982), are currently in operation

in support of agricultural decision making in SSA. For

the southeast of Burkina Faso, the OPD reaches a sim-

ilar level of performance in terms of potential yields

FIG. 9. Comparison of (top) planting dates and (bottom) simulated yield obtained by OPDs and the approaches of (left) Diallo (2001)

and (right) Dodd and Jolliffe (2001) for maize cultivation in BF: (a) planting date deviations [OPD 2 Diallo (2001)], (b) planting date

deviations [OPD2Dodd and Jolliffe (2001)], (c) relative deviation of meanmaize potential yield [OPD2Diallo (2001)], and (d) relative

deviation of mean maize potential yield [OPD 2 Dodd and Jolliffe (2001)].
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compared to the two well-established methods; that is,

these approaches are already well adapted for this in-

tensively used andmaize-dominated agricultural region.

In comparison with these approaches in operation, the

proposed OPD has the following advantages:

(i) Once a calibrated process-based crop model is avail-

able, agrometeorological and crop yield data are re-

quired to derive crop and location-specific planting

rules and to estimate planting dates. Besides the re-

quired knowledge needed to calibrate the cropmodel,

this approach can be seen as fully objective. However,

agronomic and agrometeorological knowledge is still

required to validate the outcome of this study.

(ii) Instead of relying exclusively on rainfall amount

and distribution around planting, the OPD approach

not only accounts for plant water requirements and

availability throughout thewhole growing period, but

also for radiation and temperature. This information

is inherently included by coupling the planting rules

to a process-based crop model.

(iii) The use of fuzzy logic to estimate planting rules

instead of binary logic gives further flexibility in

estimating reliable planting dates where strict

thresholds may fail. This is exemplarily illustrated

for the amount of rainfall in a 5-day spell. A strict

value of, for example, 25mm, as used in the ap-

proach of Dodd and Jolliffe (2001), would exclude

a reasonable planting date in which, for instance,

24.9mm of rain are recorded, even if significant rain

and favorable conditions for crop growth follow.

(iv) Finally, theOPDapproach is not elaborating a single

specific planting date, but rather it is suggesting a set

of reasonable planting rules, leading to a time win-

dow for planting of approximately 2 weeks. This can

help to increase the adoptability of this approach for

smallholders, because their decisions about planting

also depend on other external factors such as the

availability of seeds, labor, machinery, etc.

This approach achieves higher potential yields across

BF compared with the methods currently in operation.

Detailed in-field validation is required before being

implemented at agricultural national and regional

centers. Further studies will be conducted in order to

evaluate the potential benefits of the OPD approach if

combined with improved seasonal climate predictions

accounting for the intraseasonal rainfall variability.
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APPENDIX A

Summary of the Range of Variability of GLAM
Calibrated Parameters

See Table A1 for a summary of the range of vari-

ability of calibrated parameters in the study area.

APPENDIX B

Mean Values of Optimized Fuzzy Parameters Set

See Table B1 for a presentation of the ensemble mean

values of the fuzzy logic parameters.

TABLE A1. Summary of the range of variability of GLAM-

calibrated parameters.

Parameter Min Max

Base temperature for all development

stages (8C)
8 14

Optimum temperature for all development

stages (8C)
25 35

Max temperature for all development

stages (8C)
35 45

GDDs from emergence to anthesis (8C) 500 1000

GDDs from anthesis to grain filling (8C) 300 8000

GDDs from grain filling to max LAI (8C) 150 300

GDDs from max LAI to maturity (8C) 200 500

Max LAI growth (m2m22 day21) 0.01 0.21

Constant of soil heat flux (–) 0.1 0.8

Extinction coef for PAR (–) 0.1 0.9

Soil water content fraction threshold (–) 0.3 0.8

Extractable front velocity (cmday21) 0.2 1.1

Depth of soil over which evaporation

occurs (mm)

20 50

Albedo (–) 0.1 0.3

Uptake diffusion coef (cm2 day21) 0.3 0.7

LAI corresponding to max transpiration (-) 0.6 2.4

Max of potential transpiration (cm) 0.4 0.6

Vapor pressure deficit (kPa) 0.6 1.1

Transpiration efficiency (Pa) 1 4
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