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Abstract 

In many drainage basins around the world, no runoff data are available. This situation is more 

pronounced in developing countries, where many river basins lack runoff data and so are 

ungauged.  In West Africa, the general situation of insufficient data is exacerbated by the decline 

of the measuring network observed since the late eighties. With the aim of predicting hydrological 

variables in ungauged basins, regionalization methods are usually used. The main objective of this 

study is to make prediction of streamflow hydrographs on the Bani basin to improve the knowledge 

of water resources availability. Firstly, the hydrological model SWAT was calibrated on many 

gauged catchments on the period 1983-1992 and validated on 1993-1997 using the Generalized 

Likelihood Uncertainty Estimation (GLUE) approach. Secondly, the studied catchments were 

categorized into clusters of similar physioclimatic characteristics by the means of a multivariate 

statistical analysis.  And finally, in each case, the entire set of optimized model parameters was 

transferred from gauged to ungauged catchments based on physical similarity and spatial 

proximity approaches, and the discharge hydrograph was simulated on the target catchment for the 

period 1983-1997. Results indicated that the daily model performs as good as the monthly model 

at catchment and subcatchment scales, despite the limited data condition underlying the 

hydrological modeling. On a daily basis, a good performance of the SWAT model at the whole 

catchment scale has been obtained as depicted by a Nash-Sutcliffe Efficiency (NSE) of 0.76 and 

0.84 and a coefficient of determination R2 of 0.79 and 0.87 for calibration and validation periods, 

respectively. In addition, the PBIAIS values were smaller than 25% in magnitude for both 

calibration and validation periods, reflecting a reasonable prediction of the water balance. 

Predictive uncertainties were acceptable despite being larger during high and low flows conditions. 

The 61% of observed data (P-factor = 0.61) were enclosed within a small uncertainty band (R-

factor = 0.91). A better model performance and smaller predictive uncertainties have been 

achieved with monthly calibration compared to daily calibration, except for the water balance, 

where errors have slightly increased. A total of 12 model parameters were identified that best 

simulate the observed discharges. The test catchments principally aggregated into three groups: a 

group of northerly flat and semi-arid catchments, another group of southerly hilly and humid 

catchments, and a third group located in the center of the study basin, inside which, none of the 

descriptors seems to exert a strong control on the similarity. Overall, regionalization yielded 
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satisfactory to very good results at many target catchments. The best efficiencies have been 

recorded in the arid zone and at the whole catchment outlet with NSE values ranging between 0.56 

and 0.83. However, predictive uncertainty showed an increase with aridity. A good mutual 

hydrological similarity was found in a set of catchments belonging to different physical regions, 

and between which, spatial proximity was found to be a better surrogate of this similarity. The 

knowledge of water resources availability where it is not measured is very useful for many 

applications such as water allocation for consumption and irrigation especially in West Africa 

frequently facing water deficit and food insecurity due to the impacts of a changing climate. 

Results also contribute to the advance in understanding of hydrological processes of a newly 

investigated area in the field of Prediction in Ungauged Basins (PUB), and constitute a first step 

toward further investigations on catchment functioning on which depends largely the success of 

any regionalization of hydrological information.  

 

Keywords: Prediction in ungauged Basins, SWAT model parameters, Performance and predictive 

uncertainty, Multivariate statistics, Regionalization, Bani basin, West Africa.  
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Résumé 

De nombreux bassins de drainage à travers le monde ne disposent d’aucune mesure de débit. Les 

méthodes de régionalisation sont alors généralement utilisées pour les prévisions en bassins non 

jaugés. L'objectif principal de cette étude est de prévoir les hydrogrammes d’écoulement dans le 

bassin du Bani afin de contribuer à l’amélioration de la connaissance sur la disponibilité des 

ressources en eau. Tout d'abord, le modèle hydrologique SWAT a été calibré sur de nombreux 

bassins jaugés sur la période de 1983-1992 et validé sur la période 1993-1997 en utilisant la 

méthode « Generalized Likelihood Uncertainty Estimation (GLUE) ». Ensuite, des groupes de 

bassins similaires ont été déterminés en fonction de leurs caractéristiques physiographiques et 

climatiques et au moyen d’une analyse statistique multivariée. Deux méthodes de régionalisation 

basées sur le concept de similarité entre bassins, ont été utilisées : la similarité physique et la 

proximité spatiale. Dans les deux cas, le jeu de paramètres calés du modèle est entièrement 

transféré du bassin jaugé vers le bassin non jaugé pour y simuler l’hydrogramme de débits 

journaliers de la période 1983-1997. Les résultats indiquent une bonne performance du modèle à 

l’échelle journalière et mensuelle, ainsi qu’à l’échelle du bassin et des sous-basins. La performance 

du modèle à l’échelle du bassin global et sur un pas de temps journalier est caractérisée par un 

critère de Nash de 0.76 et 0.84 et un coefficient de détermination de R2 de 0.79 et 0.87 en période 

de calibration et de validation, respectivement.  Aussi, les valeurs absolues du PBIAIS demeurent 

inferieures à 25%, ce qui témoigne d’une bonne prévision du bilan d’eau. Il est à noter que les 

incertitudes associées demeurent satisfaisantes malgré les conditions de données limitées qui sous-

tendent cette modélisation. Ainsi, 61% des débits observés (P-factor = 0.61) sont compris à 

l’intérieur de la bande d’incertitude dont la largeur reste adéquate (R-factor = 0.91). La calibration 

mensuelle a quant à elle permit d’atteindre une meilleure performance du modèle et une diminution 

des incertitudes à l’exception du bilan d’eau dont les erreurs de prévision semblent avoir augmenté. 

La calibration a également permis d'identifier 12 paramètres du modèle qui simulent au mieux les 

débits observés. Les bassins étudiés ont été classes en trois groupes: un groupe de bassins de plaine, 

semi-arides et situés au Nord, un autre groupe de bassins d’altitude qu’on rencontre dans les zones 

humides du Sud, et un troisième groupe situé dans le centre du bassin d'étude, à l'intérieur duquel, 

aucun des descripteurs semble se démarquer significativement des autres. Dans l'ensemble, la 

régionalisation a donné de bons résultats au niveau de plusieurs bassins cibles. Les meilleurs ont 
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toutefois été enregistrés dans la zone aride et à l’exutoire global du bassin, particulièrement. 

Cependant, on note également une augmentation des incertitudes précisément dans cette zone. Une 

bonne similarité hydrologique mutuelle a été mise en évidence entre certains bassins, dont le 

meilleur indicateur reste la proximité spatiale. La connaissance de la disponibilité des ressources 

en eaux, particulièrement au niveau des bassins non jauges, est d’une utilité capitale dans plusieurs 

domaines d’application telles que l'allocation de l'eau pour la consommation et pour l'irrigation 

surtout en Afrique de l'Ouest qui fait face fréquemment à la gestion des risques liés au déficit en 

eau et a l'insécurité alimentaire en raison des impacts du changement climatique. Ces résultats 

contribuent également à une meilleure compréhension du fonctionnement hydrologique d’une 

zone jusque-là non explorée dans le domaine de la prévision en bassins non jaugés (PUB), et 

constituent une première étape vers de nouvelles investigations qui contribueront à l’amélioration 

des prévisions de l’information hydrologique.  

 

Mots clés : Prévisions en Bassins non jaugés, Paramètres du modèle SWAT, Performance et 

incertitudes liées à la prévision, Analyse multivariée, Régionalisation, Bassin du Bani, Afrique de 

l’Ouest.   
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1. Introduction 

 

1.1. Problem statement  

Water resources managers are facing challenges in many river basins across the world due to 

limited data availability. Climate and land use changes – be it natural or human-induced – add 

more complexity to this task (Pomeroy et al., 2013; Sivapalan et al., 2003). This situation is 

more pronounced in developing countries, where in many river basins no runoff data is 

available (Bormann and Diekkrüger, 2003; Kapangaziwiri et al., 2012; Mazvimavi et al., 2005; 

Minihane, 2013; Ndomba et al., 2008) and the existing ones are of questionable quality or at 

best short or incomplete.  

The Niger River basin is not an exception to that fact. In the eighties and nineties, for instance, 

hydrometric stations were reduced to a minimum (Nkamdjou and Bedimo (2008)). To prevent 

the hydrologic observing system from more degradation, the Niger Basin Authority (NBA) has 

set the Niger-HYCOS project, which one of its specific objectives is to improve data quality 

of the Niger River. For this purpose, the project identified and brings assistance in the 

installation and the management of 105 hydrometric stations shared by nine countries drained 

by the River, and contributes to the capacity building of national hydrological services. 

In its fifth assessment report on regional aspects of climate change, the Inter-Governmental 

Panel on Climate Change (IPCC, 2014) has shown that adaptation to climate change in Africa 

is confronted with a number of challenges among which is a significant data gap. Too many 

basins lack reliable data necessary to assess in details impacts of climate change on different 

components of the hydrological cycle and to develop strategies of adaptation related to each 

specific impact. Thus, there is an urgent need to predict hydrological variables in ungauged 

basins for building high adaptive capacity by improving: (i) water resources knowledge, 
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planning and management, (ii) identification and implementation of strategies of adaptation to 

climate change in the sector of water, and (iii) ecological studies for a sustainable development. 

Additionally, Blöschl et al. (2013) developed an exhaustive range of applications for which 

prediction in ungauged basins is needed, such as hydraulic structures design, flood and drought 

management, water allocation, hydropower, ecological purposes and water quality, to cite few. 

Another important problem that is now acknowledged by the international community is the 

increasing importance of uncertainty analysis in hydrology (Beven, 2008; Hrachowitz et al., 

2013). Hydrological predictions should systematically integrate uncertainty analysis (Beven, 

2006) and thus provide not only one situation, but a variety of possible situations on which 

decisions can be built (Dessai et al., 2009; Paturel, 2014). As discussed by Hulme (2011). 

Decision-makers need uncertainty evaluation rather than pseudo-certainty. Possible future 

scenarios are more needed for Prediction in Ungauged Basins (PUB) which adds to the 

traditional uncertainty related to hydrological modeling (related to input data, model structural 

errors, and parameters identification), another source of uncertainty related to model 

parameters transfer. However, little attention has been given to the uncertainty resulting from 

model parameters regionalization at ungauged sites (Wagener and Wheater, 2006), especially 

on the Bani catchment, where to our knowledge no such a study exists.  

1.2. Scope of the study 

With the aim of predicting hydrological variables in ungauged basins, regionalization 

procedures are usually used. Different types of regionalization methods exist, and can be 

divided into (He et al., 2011; Hrachowitz et al., 2013): (1) Regionalization of flow and flow 

metrics, and (2) regionalization of model parameters. The latter is a process-based method and 

involves the application of a rainfall-runoff model and the transfer of model parameters from 

gauged to ungauged catchments. In spite of the additional uncertainties related to input data, 
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model structure, parameter identification, and the need of rigorous calibration at gauged 

catchments (Blöschl, 2011; He et al., 2011; Wagener and Wheater, 2006), it remains a long-

standing method (Wagener et al., 2004a) for flow prediction in ungauged basins. Because of 

runoff process results from the interaction between all important processes within a catchment, 

and these processes can be physical, chemical and biological (Blöschl et al., 2013). The 

quantification of the impact of such processes on the runoff behaviour can only be 

approximated by a hydrological model. The transfer of model parameters can make use of 

either regression-based methods or distance-based methods. The latter group of methods 

assumes that there exists a similarity measure, which can be used to transfer, to a certain extent, 

hydrological information from a catchment to another to which it is similar. 

Given this background, the main objective of this thesis is to make predictions of streamflow 

hydrographs on the Bani basin to improve the knowledge of water resources availability. The 

specific objectives are to:  

 Calibrate a rainfall-runoff model on many gauged catchments and identify the best 

model parameter sets;  

 Provide a classification of catchments based on their physiographic and climatic 

characteristics  

 And regionalize the optimized model parameters from gauged to ungauged catchment 

based on the physical similarity, and achieve discharge hydrograph without need of any 

measurement. 

Specific research questions are addressed in order to achieve the aforementioned objectives: 

(1) To which extent does the SWAT model for the Bani catchment depend on the temporal and 

spatial scale?  

(2) What are the SWAT model parameters that best describe the hydrological behaviour of the 

Bani basin?  
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(3) Can the use of measured sparse point rain gauge data provide valuable information for 

discharge simulation?  

(4) What is the physio-climatic pattern of similarity between catchments?  

(5) What are the dominant controls on similarity between catchments?  

(6) Is there any pattern of the regionalization performance and prediction uncertainty?  

(7) Which similarity-based method for regionalization performs best?  

(8) Does physical similarity entail hydrological behaviour of a catchment?  

By contributing to the advance in regionalization of hydrological information across regions, 

this work provides the first ever complete study on discharge hydrograph prediction at 

ungauged basins on a data-sparse large Soudano-Sahelian catchment subject to different 

climate, soil and land use variabilities. The originality of this work resides in the combined use 

of daily and subcatchment performances along with the assessment of prediction uncertainty 

to provide finer temporal and spatial hydrological information and its range of variations at 

gauged and ungauged sites. Another important output of this work is the involvement of 

evapotranspiration (the most important component of the water balance after rainfall especially 

under warm climate) in the verification of model outputs reasonability, a particular attention 

that has not been considered by any previous study in the region. In addition, we used point 

rain gauge data (as per SWAT’s standard procedure) opposed to areal precipitation in order to 

maintain the real data condition (limited in time and space) as far as possible.  

1.3. Outline of the Thesis  

To address the aforementioned research questions, the Thesis is organized in 5 Chapters. 

Chapter I presents the general introduction of the thesis; the problem that supports the research 

is stated and the objectives and research questions are clearly presented.   
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Chapter II provides a literature review in order to estimate the current knowledge on the 

hydrological modeling of the study area, catchments classification and similarity frameworks 

and regionalization approach for flow prediction in ungauged basins. 

Chapter III is dedicated to the description of the input data and the particular methods involved 

in the research process. First, we describe the general modeling framework of the thesis in 

which we tried to address the questions (1) to (3). The objectives were to assess the 

performance and prediction uncertainty of the SWAT model on daily and monthly time 

intervals and at catchment and subcatchment levels, and to identify the model parameters that 

best describe the hydrological functioning of the catchment. Second, we shed light on the 

similarity framework between catchments by addressing questions (3) and (4). The objectives 

were to group catchments into clusters of similar physiographic and climatic characteristics, 

and determine the main causes of similarity. Finally, the regionalization approach is explained 

that deals with questions (6) to (8). The objectives were to predict daily streamflow hydrograph 

at ungauged catchments based on similarity concepts, and assess the prediction uncertainty 

related to the model parameters transfer.  

Chapter IV presents the main findings, their corresponding analysis and some discussions with 

regards to the current knowledge and their implications in the field of interest. 

Chapter V presents a conclusion of the whole study and gives some limitations that emerged 

out of the research process, and some recommendations and perspectives for further work.   
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CHAPTER II 
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2. Literature review  

 

2.1. Hydrological modeling of the Bani basin 

Hydrological models are valuable tools for water resources planning and management, flood 

and drought prediction, ecological studies, impact studies related to change in climate and land 

use/land cover, and find especially good applications in PUB. Many studies successfully 

applied different hydrological models on the Bani catchment for different purposes taken from 

discharge simulation to projection of future impact of climate change on freshwater availability 

(Table 2-1). It is important to note that the conceptual GR2M model (Makhlouf and Michel, 

1994) has been extensively used in West Africa and has proved to satisfactorily reproduce 

monthly flows in many river basins of the region, including the Bani basin. The SWAT model 

(Arnold et al., 1998) has recently proved valuable in large drainage basins hydrological 

modeling of the African continent as a whole. The study of Schuol and Abbaspour (2006) 

provides monthly simulations of many river discharges in West Africa along with the 

associated prediction uncertainty. It can be noticed that most of the studies used interpolated 

input climate data, either measured or generated. For instance, Schuol and Abbaspour (2007) 

developed and applied a daily weather generator algorithm that uses 0.5 degree monthly 

weather statistics from the Climatic Research Unit (CRU) to obtain time series of daily 

precipitation as well as minimum and maximum temperature for West Africa.  These generated 

weather data were then used as input for model setup and they (Schuol and Abbaspour, 2007) 

concluded that “discharge simulations using generated data were superior to the simulations 

using available measured data from local climate stations” However, the results of interpolation 

methods are strongly influenced by the density and spatial distribution of the measurement 

stations used in the interpolation (Masih et al., 2011). Such a density of data is not always 

available in developing countries. Beside the spatial scale of input data, one can notice that 
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except the work by Ruelland et al. (2012), all mentioned studies in Table 2-1, calibrated 

monthly values of the river discharge. Nevertheless, knowing daily discharge can help in many 

practical issues such as flood risk management, structure design, and more understanding of 

the hydrological processes of a catchment at finer scale, which can be smoothed out at larger 

scale. Moreover, only the studies with the SWAT model (Schuol and Abbaspour, 2006; Schuol 

et al. 2008a, 2008b) introduced the quantification of prediction uncertainty related to model 

calibration in the study area. At this point, reported Nash-coefficient values as well as 

associated prediction uncertainty vary largely between sub-basins and were principally 

presented as average intervals limiting thus, our understanding of model performance. As an 

example, Schuol et al. (2008a) presented the model performance at Douna on the calibration 

period as depicted by a NSE between 0 and 0.70, a P-factor between 60% and 80% and R-

factor between 1.3 and 2.1, which makes it difficult to appreciate the real approached 

performance. 
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Table 2-1. Summary of the previous hydrological modeling studies conducted on the Bani basin. 

Reference Objectives 
Study 

basin/area 
Model 

Input 

Rainfall 
Period Time-step Main findings/result related to the Bani 

Paturel et al. 

(2003) 

Assess the impact of gridded 

data on the performance of two 

hydrological models  

Mali, Cote 

d'Ivoire, 

Burkina Faso 

GR2M, 

WBM  

Gridded 

measured 

1950-

1995 

Monthly Robustness of the GR2M in the study area/WBM 

model more suitable for catchments of the Niger 

River, 

Paturel 

(2014) 

Hydrological scenarios Bani GR2M  Gridded 

measured 

1961-

1990 

Monthly The performance of the model is greater on a dry 

period than on a contrasted one; projected 

hydrological trends depend on the choice of the 

calibration period 

Dezetter et 

al. (2008) 

Determine the best data-model 

combination for runoff 

simulation 

Guinea, Mali, 

Cote d'Ivoire, 

Burkina Faso 

and Niger 

GR2M, 

WBM  

Gridded 

measured 

1902-

1995 

Monthly Globally better performance of the GR2M model 

is recorded (including on the Bani), 

Ruelland et 

al. (2008)  

Evaluate the sensitivity of a 

hydrological model to methods 

of interpolation 

Bani Hydrostr

ahler 

Gridded 

measured 

1950-

1992 

Daily, ten-

day  

Inverse Distance Weighted method performs best, 

especially when a hydrological model is used: 

good NSE (0.76-0.85) and satisfactory (0.52-0.58) 

at Douna on a ten-day and daily basis, 

respectively, 

Ruelland et 

al. (2012) 

Simulate future water resources 

under a changing climate 

Bani Hydrostr

ahler 

Gridded 

measured 

1952-

2000 

ten-day  Substantial decrease in rainfall and runoff 

especially in the long term behavior is projected. 

A very good NSE values greater than 0.89 at 

Douna. 

Schuol and 

Abbaspour 

(2006) 

Calibration and uncertainty 

issues 

West 

Africa/Niger, 

Senegal and 

Volta basins 

SWAT Generated 

gridded  

1971-

1995 

Monthly Globally satisfying results, large prediction 

uncertainty and negative NSE for the calibration 

period at Douna, 

Schuol and 

Abbaspour 

(2007) 

compare generated daily 

weather data to observed data 

from weather stations  

West 

Africa/Niger, 

Senegal and 

Volta basins 

SWAT Generated 

gridded  

1971-

1995 

Monthly Un-calibrated simulation with generated climate 

data better than the simulation with measured data 

from weather stations, 

Schuol et al. 

(2008a) 

Estimate freshwater availability 

at subbasin and country levels 

in West Africa 

West 

Africa/Niger, 

Senegal and 

Volta basins 

SWAT Generated 

gridded  

1971-

1995 

Monthly Globally satisfying simulations of freshwater 

availability as well as the associated prediction 

uncertainty. NSE at Douna between 0 and 0.70 for 

calibration and validation periods, 
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Schuol et al. 

(2008b) 

Model monthly sub-country-

based freshwater availability 

for Africa 

African 

continent 

SWAT Generated 

gridded  

1971-

1995 

Monthly Globally good results although with large 

prediction uncertainties in many cases, 

Faramarzi et 

al. (2013) 

Assess the impact of climate 

change on water resources in 

Africa at a subbasin level 

African 

continent 

SWAT Generated 

gridded  

1971-

1995 

Monthly Overall increase of mean water resources; 

subbasin and country variations, 

Laurent and 

Ruelland, 

(2010) 

Evaluate the contribution of the 

SWAT model in the 

understanding of streamflow 

generation 

Bani SWAT Gridded 

measured 

1952-

2000 

Monthly Good performance of the model at Douna (NSE > 

0.80) and at internal stations (NSE > 0.70). 
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2.2. Catchment classification and similarity frameworks 

Hydrological similarity between catchments is an essential concept in regionalization (Blöschl, 

2001; Harman and Sivapalan, 2009; Wagener et al., 2007) and could be derived by a 

classification scheme. As discussed by Wagener et al. (2007), the ultimate goal of classification 

is to understand the interaction between catchment structure, climate and catchment function. 

Additionally, Sawicz et al. (2011) proposed four objectives of catchment classification which 

are: 1) nomenclature of catchments, 2) regionalization of information, 3) development of new 

theory, and 4) hydrologic implications of climate, land use and land cover change. For a 

regionalization perspective, catchment classification consists in the search of hydrologically 

similar gauged catchment(s), from which hydrological information can be transferred to the 

ungauged catchment. However, hydrological similarity is difficult to define due to the 

incomplete understanding of the underlying hydrological processes (Blöschl et al., 2013) 

occurring at different landscapes and climates. In fact, many similarity indices exist and are 

related to the process they represent (Blöschl, 2006). Hence, it can be deduced that different 

similarity definitions exist as well. Hrachowitz et al. (2013) highlighted in their review of the 

decade on Prediction in Ungauged Basins (PUB) that an ideal classification scheme should 

thus combine catchment form, climate, and functioning.  

Among the numerous classification methods, multivariate statistical analyses such as 

Clustering, Principal Components Analysis (PCA) are from far the most widely used. For 

instance, Kileshye Onema et al. (2012) used 8 physiographic and meteorological variables to 

organize 21 catchments located within the Nile basin, into 2 homogeneous regions by applying 

a multivariate statistical analysis. As for Coopersmith et al. (2012), they distinguished only six 

dominant classes for 331 catchments across the continental United States using four 

hydroclimatic similarity indices in a clustering algorithm. Using 6 different hydrological and 
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climatic metrics into a different clustering algorithm, Sawicz et al. (2011) were able to organize 

US catchments into 9 homogenous groups, and into 12 in a subsequent study (Sawicz et al., 

2014), attempting to explain the impact of input metrics and temporal scale on similarity. It is 

worth noting the work of Raux et al. (2011) involving 24 worldwide large drainage basins, 

among which, the Niger basin. In fact, Raux et al. (2011) considered sixteen geomorphological 

and climatic variables into multivariate statistical analyses and obtained 6 clusters along with 

the description of the major controlling factors driving the hydro-sedimentary response of each 

group. Beside, different approaches have been used in order to make a classification of 

catchments around the world such as self-organizing maps used by Di Prinzio et al. (2011) to 

organize around 300 Italian catchments according to several descriptors of the streamflow 

regime and geomorpho-climatic characteristics. 

Despite the tremendous studies that have recently been conducted, especially during the PUB 

decade (2003-2012), trying to define catchment classification and similarity frameworks, little 

attention has been paradoxically given to developing countries, where in many cases river 

basins are ungauged. Some few studies exist for instance on the Niger River, as in Raux et al. 

(2011), but still need to be deepened because large drainage basins usually encompass several 

climatic regions and exhibit strong environmental gradients. Therefore, it is essential to break 

down the scale and provide more detailed classification scheme, and this is essential especially 

when prediction in small ungauged catchments is foreseen. Only one a priori classification of 

the Niger basin exists and have been proposed by the Niger Basin Authority (ABN, 2007) 

which subdivided the whole basin into 4 physio-climatic regions: the Upper Niger, the Niger 

Inner Delta, the Middle Niger, and the Lower Niger. Nevertheless, a global classification at 

such spatial scale can still hide significant internal heterogeneities among subcatchments, 

hence limiting our understanding of the hydrological functioning occurring at smaller scale. In 
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addition, this classification falls short of providing a quantitative assessment of the degree of 

(dis)similarity within and between the so-called homogenous regions, and why they are similar.  

 

2.3. Regionalization approach for flow prediction in ungauged basins 

Different types of regionalization methods exist, and can be divided, as suggested by 

Hrachowitz et al. (2013) after He et al. (2011), into: (1) regionalization of flow and flow 

metrics, and (2) regionalization of model parameters. In both cases, either regression-based 

methods or distance-based methods can be used. The application of a rainfall-runoff model and 

then, transferring model parameters from gauged to ungauged catchments is a long-standing 

method (Wagener et al., 2004b) for flow prediction in ungauged basins. The major weakness 

of this method is that it adds more uncertainty related to input data, model structural errors and 

model parameters identification, and it requires strong calibration of model parameters at one 

or more gauge sites (Blöschl, 2011; Blöschl et al., 2013; He et al., 2011; Wagener and Wheater, 

2006). This calibration requirement implies a certain data need that is not always fulfilled 

especially in developing regions (Buytaert and Beven, 2009). 

A range of studies emphasized the value of model parameter regionalization based on 

regression methods, which consist in deriving statistical relationships between catchment 

attributes and the optimized model parameters (Cheng et al., 2012; Kim et al., 2015; Laaha and 

Blöschl, 2006a; Laaha and Blöschl, 2006b; Lyon et al., 2012; Mazvimavi et al., 2005; 

Mazvimavi et al., 2004; Soulsby et al., 2010a; Soulsby et al., 2010b; Viviroli et al., 2009). 

Notwithstanding being considered as the most common regionalization approach for flow 

prediction in ungauged catchment (Wagener and Wheater, 2006), statistical methods are 

limited in use due to the presence of equifinality in calibrated model parameters. In fact, it 

becomes difficult to associate individual parameters with the physical characteristics of the 

catchment (because each parameter can take several values). Another drawback of these 
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methods is that most statistical models consider linearity between catchment attributes and 

model parameters (Merz and Blöschl, 2004; Parajka et al., 2005) although this linearity seldom 

represents hydrological reality (Bárdossy, 2006). Consequently, Bárdossy (2005) suggested 

instead, the transfer of the complete parameter sets to ungauged sites. It is worth noting the 

success of simple regression methods on direct flow metrics that have been developed in West 

and Central Africa by ORSTOM (the current French institute for development research) 

method developed by Rodier and Auvray, (1965) and CIEH (the Panafrican comity in charge 

of hydraulic research) method by Puech and Chabi-Gonni, (1983). These methods aim at 

predicting the 10 percent exceedance probability discharge, generally referred to as Q10, as a 

function of climatic and geomorphologic variables combined into a multiple linear regression. 

In spite of the their simplicity, they need to be updated with new variables (due to the problem 

of non-stationarity in precipitation, and the impact of land use/land cover change that can affect 

significantly the constants used in the formulas) and to be enlarged to other catchments (have 

been developed only for specific catchments and climate) in order to improve their 

regionalization scope.  

Similarity methods are suitable for addressing the aforementioned issue of non-uniqueness of 

model parameters, as well as for propagating prediction uncertainty from gauged to ungauged 

catchment. These methods are based on the search of hydrologically similar gauged catchments 

from which hydrological information can be transferred to the ungauged catchments. 

Hydrological similarity is an essential concept in regionalization (Blöschl, 2001; Harman and 

Sivapalan, 2009; Wagener et al., 2007). Many similarity concepts have been proposed in the 

literature that attempt to represent various hydrological processes occurring at different 

locations. For instance, (Blöschl, 2011) proposed three similarity concepts: Spatial proximity, 

similar catchment attributes and similarity indices. In the first concept, catchments that are 

close to each other are assumed to behave hydrologically similarly. Geostatistical methods are 
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based on this similarity measure. Many authors have indicated, for instance, the predominance 

of kriging methods on deterministic models in well-gauged regions (Laaha et al., 2014; Parajka 

et al., 2013; Salinas et al., 2013; Skøien and Blöschl, 2007). Likewise, Castiglioni et al. (2011) 

demonstrated that Top-kriging outperforms Physiographical-Space Based Interpolation (PSBI) 

at larger river branches. Nonetheless, it was pointed out that spatial proximity does not always 

involve functional similarity between catchments (Ali et al., 2012; Oudin et al., 2010), and thus 

Bárdossy et al. (2005) and He et al. (2011) suggested, instead, the application of hydrologically 

more meaningful distance measures. From this, it can be deduced the importance of the 

following concepts. Thus, catchment attributes, such as catchment size, mean annual rainfall, 

and soil characteristics are used as indicators of physiographic similarity. The rationale for this 

concept is that physio-climatic characteristics have dominant controls on runoff processes and 

implicitly assumes that physical similarity implies similar hydrological functioning (Oudin et 

al., 2010). Many studies stressed the value of parameter regionalization methods based on 

physiographic similarity, as a proxy for functional similarity (Dornes et al., 2008; Masih et al., 

2010; Parajka et al., 2005). However, Merz and Blöschl (2009) showed that land use, soil types 

and geology did not exert a strong control on catchment functioning in Austria, and Oudin et 

al. (2010) concluded in a study involving 893 French catchments and 10 other located in the 

United Kingdom, that the implicit assumption of correspondence between physical and 

functional similarity is invalid in many catchments. The third similarity concept is based on 

hydrologic function characterized by similarity indices usually defined as dimensionless 

numbers as the ones given by Wagener (2007), which aim at representing various hydrological 

processes. For instance, the aridity index of Budyko is used to define similarity in climate 

(Sivapalan et al., 2011; Tekleab et al., 2011), and has proved to be a good indicator of 

catchment behavior. Nevertheless, as discussed by Blöschl (2006), different similarity indices 

exist and relate to the process they represent, and there exist no unique similarity framework 
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that could be adopted for all cases. Hrachowitz et al. (2013) highlighted the same issue in their 

review of the decade on Prediction in Ungauged Basins (PUB), and suggested that an ideal 

classification scheme should thus combine catchment form, climate, and functioning.  

Another important aspect that has been highlighted during the PUB decade (2003-2012), was 

the increasing importance of uncertainty analysis in hydrology ((Hrachowitz et al., 2013) after 

(Beven, 2008)). Thus, uncertainty analysis should be integrated in any scientific paper (Beven, 

2006) and should also be systematically conducted following certain guidelines (Liu and 

Gupta, 2007). In spite of a variety of model uncertainty assessments at well gauged catchments 

that have recently been conducted (Abbaspour et al., 2004; Beven and Binley, 1992; Jiang et 

al., 2015; Schuol and Abbaspour, 2006; Schuol et al., 2008a; Schuol et al., 2008b; Sellami et 

al., 2013), little attention has been given to the uncertainty resulting from model parameter 

regionalization at ungauged sites (Wagener and Wheater, 2006).  
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CHAPTER III 
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3.  Material and Methods  

In this chapter, the study area, the available input data and databases for the SWAT model, the 

quality control on hydro-meteorological data are described. In addition, we present all the 

particular methods through which research questions were answered.  

 

3.1. The study catchment 

The Bani is the major tributary of the Upper Niger River. Its drainage basin is principally 

located in Mali but spans in a lesser extent over Cote d’Ivoire and Burkina Faso and covers an 

area of about 100,000 km2 at Douna gauging station (Figure 3-1). The Bani watershed was 

chosen for this study, on one hand, due to relatively higher data availability compared to 

regional situation. It thus constitutes the appropriate gauged catchment in different hydro-

climatic variables. On the other hand, this watershed has not been affected by important 

hydraulic structures able to significantly modify its flow regime, making the hydrological 

modeling of that catchment more convenient.  

The catchment’s topography (Figure 3-1) is characterized by a gentle elevation that ranges 

from 826 m in the South and the Centre-Est to 249 m at the outlet in the North. Based on the 

USGS Global Land Cover Characterization (GLCC) version 2.0 (Loveland et al., 2000), 

croplands constitute the dominant land use category followed by shrubland and woodland 

(Figure 3-3). Major soil groups are mainly constituted by Luvisol, Acrisol and Nitosol (Figure 

3-4). The Bani catchment is characterized by a Sudano-Sahelian climatic regime. The river 

flows from south to north along a high rainfall gradient. Annual precipitation varies from 1250 

mm at Odienne to 615 mm at Segou (average of the period 1981-2000). The 

Upstream of the watershed is formed by a crystalline and metamorphic base containing 

groundwater of small storage capacity because located in the weathering products or in the 

cracks. The lower part is made up of large scale sandstone and alluvial deposits along the 
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streams, inside which groundwater is much more substantial (Ruelland et al., 2009). The 

average annual discharge recorded at Douna gauging station between 1981 and 2000 was 184 

m3 s-1, the smallest discharges were recorded during the years 1983, 1984 and 1987. Due to 

climate change, there was an abrupt decrease in rainfall in the period 1970-1971 (L'Hote et al., 

2002; Ruelland et al., 2012) with a more severe impact on water resources. A decrease of more 

than 60% in discharge at Douna (Mahé et al., 2000; Ruelland et al., 2012) and lower 

contribution of baseflow to the annual flood (Bamba et al., 1996; Ruelland et al., 2009) have 

been reported since the seventies. Concerning future climate change impacts, the Bani basin is 

projected to experience substantial decrease in rainfall and runoff especially in the long term 

behaviour (Ruelland et al., 2012). 
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Figure 3-1. Localization of the Bani catchment and the hydro-climatic monitoring network. 

 

3.2. Calibration and validation of the SWAT model   

3.2.1. Model description 

SWAT is a river basin, or watershed, scale model developed to predict the impact of land 

management practices on water, sediment, and agricultural chemical yields in large, complex 

watersheds with varying soils, land use, and management conditions over long periods of time 
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(Arnold et al., 1998). The model is semi-distributed, physically based and computationally 

efficient, uses readily available inputs and enables users to study long-term impacts (Winchell 

et al., 2013). For a detailed description of SWAT, see Soil and Water Assessment Tool 

input/Output version 2012 (Arnold et al., 2012a) and the Theoretical Documentation, Version 

2009 (Neitsch et al., 2011). 

The ArcSWAT (ArcGIS extension) is a graphical user interface for the SWAT model. In the 

present study, the recent version, ArcSWAT2012, was used for building the hydrological 

model of the Bani catchment. 

The hydrologic cycle simulated by SWAT is based on the water balance equation:  
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where, SWt is the final soil water content (mm H2O), SW0 is the initial soil water content on 

day i (mm H2O), t is the time (days), Rday is the amount of precipitation on day i (mm H2O), 

Qsurf is the amount of surface runoff on day i (mm H2O), Ea is the amount of evapotranspiration 

on day i (mm H2O), Wseep is the amount of water entering the vadose zone from the soil profile 

on day i (mm H2O) and Qgw is the amount of groundwater exfiltration on day i (mm H2O).  

SWAT divides a basin into sub-basins which are further discretized into hydrologic response 

units (HRUs), based on unique soil-land use combinations. The subdivision of the watershed 

enables the model to reflect differences in evapotranspiration for various crops and soils. 

Runoff is predicted separately for each HRU and routed to obtain the total runoff for the 

watershed. This increases accuracy and gives a much better physical description of the water 

balance (Neitsch et al., 2011). 

Various hydrological models exist and there is no strict guideline on the selection of the model. 

The SWAT model uses a modified version of the Curve Number method, which was developed 

in the US for specifically calculating surface runoff generation. Therefore the model is 

especially suitable for regions with a high share of overland flow on total runoff. Other 
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advantages of SWAT model are that it allows a number of different physical processes 

(hydrologic, sediment, pollutants) to be simulated in a watershed. It has been previously 

validated for several large-scale watersheds throughout different climate contexts across the 

globe and has performed satisfactorily even in data poor and complex catchment (Bouraoui et 

al., 2005; Ouessar et al., 2009). SWAT is also very flexible in terms of using specific and 

appropriate soil and land use of the watershed to be modelled by adding them to its database. 

But in this context, it is worth using a low cost or free model, which West African National 

Hydrological services could afford due to economic constraints. 

 

3.2.2. Input data and databases 

The SWAT model for the Bani was constructed using weather data and globally and freely 

available spatial information described in Table 2-1. 

Table 3-1. Input data of the SWAT model for the Bani catchment. 

Data type Description Resolution/period Source 

Simulation data 

Topography Conditioned DEM 90 m 
USGS hydrosheds 

http://hydrosheds.cr.usgs.gov/dataavail.php 

Land use/ 
land cover 

GLCC version 2 1 km 
Waterbase 

http://www.waterbase.org/resources.html 

Soil FAO Soil Map 
Scale 

1:5000000 

FAO 

http://www.fao.org/geonetwork/srv/en/main.hom
e 

River River network map 500 m 
USGS Hydrosheds 

http://hydrosheds.cr.usgs.gov/dataavail.php 

Weather data 

Rainfall, maximum 

and minimum 
temperature 

Daily /1981-2000 AGRHYMET 

Calibration/verification data 

Discharge Discharge Daily /1983-1997 
AGRHYMET/National hydrological service of 

Mali 

PET 
Potential 

evapotranspiration 
Ten-day /1983-1998 National Meteorological Agency of Mali 

Epan Pan evaporation Monthly /1983-1997 AGRHYMET 

http://hydrosheds.cr.usgs.gov/dataavail.php
http://www.waterbase.org/resources.html
http://www.fao.org/geonetwork/srv/en/main.home
http://www.fao.org/geonetwork/srv/en/main.home
http://hydrosheds.cr.usgs.gov/dataavail.php
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3.2.3. Hydro-meteorological data and quality control 

Data analysis is of the utmost importance because of the quality of input data depends the 

quality of model results. Weather data, as input for SWAT, determine the accuracy of model 

simulation. Moreover, input flow data for calibration purpose need to be correct to have a 

realistic parameters estimation. This analysis is particularly important in West Africa, where 

the problematic of hydro-meteorological data constitutes a real stumbling-block to 

hydrological modeling of many river basins. The problem is mostly related to the decline of 

the measuring network observed since the late eighties (Ali et al., 2005a, 2005b) with the end 

of large-scale funding toward national meteorological and hydrological services for the 

monitoring of weather and hydrometric stations. Many of them have been abandoned or at best 

irregularly followed. This situation drastically affects data quality and quantity, with significant 

gaps that are found in the time series. As a consequence, in the present case study for instance, 

the length of the simulation period has been limited by the lack of data after the year 2000 at 

monitoring stations located in Cote d’Ivoire, and the calibration/validation period has been 

significantly reduced due to the presence of more missing data affecting almost all the 

hydrometric stations in the late nineties (from the year 1997).  

The first task was to determine a common period for both climatic and discharge data because 

collected data time series were of varying lengths. Retained data then underwent a thorough 

quality control as recommended by the World Meteorological Organization (WMO) in the 

guide to climatological practices, third edition (WMO‑No.100, 2011). The objective of the 

control is to detect erroneous data in order to correct and if not possible to delete it. Three 

procedures were applied: (1) completeness check, (2) plausible value check, and (3) 

consistency check. For this purpose, statistical techniques are a valuable tool in detecting errors 

and graphical displays of data constitute a complementary tool for visual examinations.  
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The completeness test was applied to all data in order to determine the presence of missing 

values and whether the available data can provide enough information about hydro-

meteorological systems prevailing in the study area. Consistency test (minimum temperature 

is always smaller than the maximum temperature) and plausibility test (according to the 

knowledge on the study area, there is a plausible interval of variation of temperature values) 

were solely applied to temperature data. At the end of the tests, we decided which gauge or 

which year should be introduced into the input database.   

Table 3-2. Available daily precipitation data time series: length and completeness. 

Stat 

1
9
8
1
 

1
9
8
2
 

1
9
8
3
 

1
9
8
4
 

1
9
8
5
 

1
9
8
6
 

1
9
8
7
 

1
9
8
8
 

1
9
8
9
 

1
9
9
0
 

1
9
9
1
 

1
9
9
2
 

1
9
9
3
 

1
9
9
4
 

1
9
8
5
 

1
9
9
6
 

1
9
9
7
 

1
9
9
8
 

1
9
9
9
 

2
0
0
0
 

2
0
0
1
 

2
0
0
2
 

2
0
0
3
 

2
0
0
4
 

2
0
0
5
 

2
0
0
6
 

2
0
0
7
 

2
0
0
8
 

2
0
0
9
 

2
0
1
0
 

Ba                                                             

Bo                                                             

Bd                                                             

Ko                                                             

Od                                                             

Se                                                             

Si                                                             

*Te                                                             

Ma                                                             

Kl                                                             

Di                                                             

Ci                                                             

Ba: Bamako, Bo: Bougouni, Bd: Boundiali, Ko: Koutiala, Od: Odienne, Se: Segou, Si: Sikasso, Te: Tengrela, Ma: Mahou, Kl: Kolondieba, 
Di: Dioila and Ci: Cinzana 

*: Discarded from the SWAT input climatic database 

 
     

<10% 

missing      

<20% 

missing 

<50% 

missing      

>50% 

missing

  

No data 

 

Climatic data  

Daily precipitation as well as daily maximum and minimum air temperatures of observed 

monitoring stations were used to provide SWAT with input weather variables. The location 

and spatial distribution of input precipitation and temperature stations are represented on 

Figure 3-1. A total of 11 rain gauges and 5 weather stations were retained and covered different 
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climatic and physiographic subregions of the Bani. The analysis of Table 3-2 revealed that 

precipitation data are complete at the majority of sites except for a few number of them: one 

year containing less than 20% missing data at Dioila, two years with less than 50% at cinzana 

and one complete missing year at Mahou. In these cases, the SWAT built-in weather generator 

is used to generate a value based on the provided local weather statistics and fill in missing 

data during run time. A part from missing values, no apparent inconsistencies were found inside 

precipitation data. The period of observation 1981-2000 was retained as the simulation period 

because it is common to all stations. Tengrela rain gauge was discarded because containing a 

sequence of 5 years with much more missing data which vary from 33% to 100%.  
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Figure 3-2. Examples of quality control test failures (a) Inconsistency in daily temperature data at 

Segou (b) implausible minimum temperature values at Bougouni. 

 

Concerning temperature data, it has been noted that the original dataset contains less than 10% 

missing values but are scattered with errors. Therefore, a day by day meticulous analysis was 

conducted and many cases where temperature time series failed consistency and plausibility 

tests have been recorded at certain locations and dates. In such cases, the erroneous data is 

simply deleted and considered as missing. This technique, even though disputable, remains the 

only resort in case of datasets without appropriate metadata. Above (Figure 3-2) are some 
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quality control results on temperature data. Figure 3-2 (a) shows an example of inconsistency 

at the Segou weather station where maximum temperature is equal to minimum temperature of 

the same day and this, during the whole month of October 1991, while on Figure 3-2 (b) it can 

be detected a sequence of implausible zero values in minimum temperature of December 1995 

at Bougouni. 

 

Discharge data 

Daily discharge data were available at 7 monitoring stations throughout the Bani (Figure 3-1). 

The analysis of the discharge record was mainly based on completeness test and visual analysis 

of hydrographs and revealed the presence of high missing data. As a consequence, 1983-1997 

was kept for calibration and validation processes as it is the period which exhibits few gaps at 

the majority of subbasins except for Kouoro1 and Debete where 1983-1991 and 1983-1989 

were available, respectively. Small existing gaps were thus filled by a simple linear 

interpolation. A summary description of the available discharge monitoring stations on the Bani 

for the present study is given in Table 3-3. 

Table 3-3. Available discharge measurements on the Bani. 

Stat_name River Country Long Lat Elev (m) 
Basin_area 

(km2) 
Available data 

Douna Bani Mali - 5.90 13.21 267 101000 1981-1997 

Dioila Baoule Mali - 6.80 12.52 269 31573 1981-1997 

Bougouni Baoule Mali - 7.45 11.40 309 14926 1981-1997 

Madina Diassa Baoule Mali - 7.67 10.80 327 8417 1981-1997 

Kouoro 1 Banifing Mali - 5.68 12.02 278 14487 1983-1991 

Pankourou Bagoue Mali - 6.55 11.45 282 32048 1981-1997 

Debete Kankelaba 
Cote 

d'Ivoire 
- 6.63 10.65 336 5675 1981-1989 
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3.2.4. GIS-data and databases  

 

Soil and land use data  

The soil map of the Bani was derived from the Food and Agriculture Organization of the United 

Nations (FAO) Digital Soil Map of the World (DSMW) Version 3.6, completed on January 

2003. The map is based on the original FAO-UNESCO Soil Map of the World published 

between 1974 and 1978 and available at 1:5.000.000 scale.  

We utilized the GLCC United States Geological Survey’s (USGS) a 1-km resolution Global 

Land Cover Characteristics (GLCC) map version 2.0 (Loveland et al., 2000) to build the Bani 

land use map. GLCC has been built with data of a 12-month period 1992-93 and therefore 

represents the land cover pattern of that period.  

Major soils that occur in the study catchment are mainly constituted by Luvisols, Acrisols and 

Nitosols and cover a cumulative proportion of more than 97% of the total catchment area 

(Figure 2-3). In addition, minor inclusions of Gleysols. Lithosols, Regosols and Cambisols can 

be found. In the following, the description of the soils is summarized based on the FAO-

UNESCO legend (FAO-UNESCO, 1977) and Bouwman (1990) who provided additional 

discussions on that legend.   

About half of the Bani area, from the centre to the north, is covered by Luvisols and correspond 

to the domains of savannah and agricultural land. Ferric luvisols are mainly formed in the 

tropical zone with a long dry season and are essentially good for major food crops production 

and extensive livestock raising. They possess a clay horizon, moderate organic matter content 

and inherent fertility. Acrisols occur in general in warm temperate moist forest, subtropical 

moist forest and subtropical moist forest. They are characterized by coarse or medium texture, 

strong acidity, very low availability of nutrients and an argillic horizon.  This soil type is present 
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in the highlands situated in the South of the Bani where forest constitutes the principal land use 

category. The principal feature of Nitosols is the high clay content which increases with depth. 

In addition they are characterized by high available water capacity, variable nutrients 

availability and high organic matter. With regards to Nitosols, they mostly occur in the centre 

of the study catchment under savannah and in the forested zone in a lesser extent. Lithosols 

and Regosols appear as inclusions in the Luvisols, while Cambisols are associated with 

Nitosols and Acrisols. 

 

Databases editing  

Two databases were modified to contain custom soil and land use data and their characteristics 

for the Bani: the user soils database and the crop database. Six soils namely Lithosol, Acrisol, 

Cambisol, Gleysol, Ferric Luvisol and Nitosol were entered into the user soils database. We 

considered 4 additional land use categories to the crop database: Forest, Savannah-Bush, 

Savannah and Steppe.  All the aforementioned soils and land use types as well as their 

parametrization originate from the study by Laurent and Ruelland (2010). 

A user weather generator database was created to store local weather stations including their 

statistics. These statistics are needed by the SWAT weather generator to fill in missing values 

during the running time. For this purpose, we used the excel macro WGNmaker4 (Boisramé, 

2010) on the available 5 weather stations located on and around the Bani (Figure 3-1) to 

calculate statistics that are representative of the local climate conditions (Neitsch et al. 2011 

for details on the required weather stations statistics).  

 

3.2.5. Pre-processing of the SWAT input data for the Bani catchment 

Four main data files are required by SWAT: Digital Elevation Model data, land use data, soil 

data and weather data whereas the river network data is optional.  The objective of the pre-
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processing of these data files is to prepare the data specifically for the study catchment in order 

to be used in the model.  

 

GIS-data pre-processing 

First, it is important to install ArcGIS and ArcSWAT, the graphical user interface for the 

SWAT model. Then, spatial data were downloaded at addresses given in Table 3-1 and loaded 

on ArcGIS. Following are the main steps for spatial data pre-processing: 

 Create a Clipping box which is a square region around the Bani;  

 Clip all layers by the extent of the clipping box to reduce their size; 

 Project the clipped layers to Universal Transverse Mercator (UTM) coordinates 

because SWAT requires all input files in meter units. The Bani basin spans over 

2 UTM zones: UTM Zone 29N and UTM Zone 30N. The catchment is 

extending only 1.58 degree into zone 30N so we projected it into Zone 29N.  

 Re-clip the projected layers using the clipping box file so that any missing values that 

can appear at the borders due to projection deformation are eliminated. 

 

ArcSWAT tables and text files 

There are additional necessary formatting work to be done on land use, soil and weather data 

before incorporating them into SWAT.  

The land use look up table is used to make a correspondence between SWAT land cover/plant 

code or SWAT urban land type code and each category in the land use map grid and was 

formatted as a dBase table. Therefore, the original GLCC land use types were reclassified into 

3 SWAT land use classes (Figure 3-3 and Table 3-4).  
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Figure 3-3. Land use/land cover maps of the Bani (a) original GLCC land cover and (b) SWAT land 

use classes after reclassification. 

Table 3-4. Description of the SWAT land use classes of the Bani catchment. 

SWAT_LU code Description  % basin area  

FORE Forest 11.35 

SAVA Savannah 40.3 

AGRL Agricultural Land-Generic 48.35 

 

The soil look up table (dBase) is used to make a correspondence between each category of 

the soil map and the soil type to be modeled. Then the FAO soil types were linked to 7 

SWAT soil classes: 6 of them were previously added to the user soil database and the 
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Regosols have been kept default due to lack of specific information on this soil in the Bani 

(Figure 3-4 and Table 3-5).   

 

Figure 3-4. Soil maps of the Bani (a) original FAO soils and (b) SWAT soil classes after 

reclassification. 

Table 3-5. Description of SWAT soil classes of the Bani catchment. 

SWAT soil class Description % basin area 

Li Lithosol 1.03 

Ac Acrisol 22.89 

Ca Cambisol 0.18 

Gl Gleysol 1.21 

Lu Fe Ferric Luvisol 53.02 

Ni Nitosol 21.29 

*Re33-1a-1676 Regosol 0.38 

*Default FAO soil type 
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Another type of input files required by SWAT are the gage location tables and the data tables, 

both are formatted as text files. A gauge location table indicates to the model the location of 

rain and temperature gauges. Therefore one precipitation gage location table was created 

containing 11 gauges and one temperature gage location table with 5 weather stations. In 

addition, we edited one precipitation data file containing daily precipitation for every rain 

gauge and one temperature data file containing daily maximum and minimum temperatures for 

every weather station to provide the model with climatic information.  

Table 3-6. Precipitation gauge location table. 

ID Stat_name Lat Long Elevation (m) 

1 *Bamako 12.53 -7.95 369 

2 *Bougouni 11.41 -7.5 343 

5 *Odienne 9.5 -7.56 421 

6 *Segou 13.4 -6.15 276 

7 *Sikasso 11.35 -5.68 368 

3 Boundiali 9.52 -6.47 415 

4 Koutiala 12.38 -5.46 359 

8 Kolondieba 11.1 -6.9 328 

9 Dioila 12.48 -6.8 319 

10 Cinzana 13.25 -5.97 281 

11 Mahou 12.13 -4.63 347 

*: Are temperature gauges as well.  

 

3.2.6. Model setup 

The catchment was delineated and divided into sub-catchments based on the DEM. A stream 

network was superimposed on the DEM in order to accurately delineate the location of the 

streams. The threshold drainage area was kept default and additional outlets were considered 

at the location of stream gauging stations to enable comparison of measured discharge with 

SWAT results. The whole catchment was so discretized into 28 sub-catchments, which were 

further subdivided into 181 HRUs based on soil, land use, and slope combinations. Further 

parameters have been edited through the general watershed parameters and SWAT simulation 
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menus and are reported in Table 3-1. Four simulations were performed based on land use and 

soil databases combinations: crop1soil1, crop1soil2, crop2soil1 and crop2soil2. A Nash-

Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) is thereafter calculated at Douna by 

comparing measured discharges against each default simulation and the one which will yield 

the highest NSE value will be kept for calibration and validation processes.  

Table 3-7. Input methods for SWAT model simulation on the Bani catchment. 

Code Description Method 

General watershed parameters 

IPET  Potential Evapotranspiration method Hargreaves 

IEVENT Rainfall/runoff/routing option Daily Rainfall/CN runoff/Daily routing 

ICN Daily Curve Number calculation 

method 

Soil moisture (Plant ET at Bougouni)  

IRTE  Channel water routing method  Variable storage 

SWAT simulation 

Period of simulation - 1981-2000 

NYSKIP  Warm-up period 2 years (1981 and 1982) 

 

3.2.7. Calibration and validation procedures 

It is commonly accepted in hydrology to split the measured data either temporally or spatially 

for calibration and validation (Arnold et al., 2012a). In addition to the split-sample method, a 

split-location calibration and validation approach has been performed because the global 

parameters set is not expected to be optimal for sub-catchments processes in view of the high 

heterogeneity in terms of climate, topography, soil and land use characterizing such a large-

area watershed. This approach is especially needed when prediction at data sparse sites is 

foreseen (Moussa et al., 2007; Robson and Dourdet, 2015). In the split-sample approach, the 

model was calibrated using discharge data solely measured at the catchment outlet by splitting 

the homogenous period mentioned in section 2.3 into two datasets: two-third for calibration 

(1983-1992), and the other one for validation (1993-1997). To implement the split-location 

method, the model was calibrated at Douna and then validated at intermediate gauging stations 
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(Bougouni and Pankourou) by turning the model on the same period (1983-1992), using the 

same behavioral parameters sets determined at the outlet.  

Calibration was thereafter performed at Bougouni and Pankourou stations individually, and 

both modeling frameworks facilitated a comparative analysis of model performance and 

predictive uncertainty through scales. At this step, the calibration at Bougouni did not succeed 

within realistic range of the Curve Number (CN). Then, the daily CN calculation method was 

changed to Plant ET for simulation at Bougouni because soil moisture method is found to 

predict too much runoff in shallow soils (Arnold et al., 2012a). An additional parameter 

(CNCOEF) was then necessary as required by the plant ET method and fixed to 0.5 in the Edit 

SWAT input menu.   

Calibration/validation, uncertainty analysis and sensitivity analysis were performed within the 

SWAT Calibration and Uncertainty Programs SWAT-CUP version 2012 (Abbaspour, 2014) 

using Generalized Likelihood Uncertainty Estimation (GLUE) procedure (Beven and Binley, 

1992). GLUE is a Monte Carlo based method for model calibration and uncertainty analysis. 

It was constructed to partly account for non-uniqueness of model parameters. GLUE requires 

a large number of model runs with different combinations of parameter values chosen randomly 

and independently from the prior distribution in the parameter space. The prior distributions of 

the selected parameters are assumed to follow a uniform distribution over their respective range 

since the real distribution of the parameter is unknown. By comparing predicted and observed 

responses, each set of parameter values is assigned a likelihood value. The likelihood functions 

selected here is principally the NSE as it is very commonly used and included in SWAT-CUP 

for GLUE performance assessment. In this study, the number of model runs was set to 10 000 

and the total sample of simulations were split into “behavioral” and “non-behavioral” based on 

a threshold value of 0.5, a minimum threshold for NSE recommended by (2007) for streamflow 
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simulation to be judged as satisfactory on a monthly time step. In that case, only simulations 

which yielded a NSE ≥ 0.5 are considered behavioral and kept for further analysis.  

In the calibration procedure, we included 12 parameters that govern the surface runoff and 

baseflow processes. The real approached baseflow alpha factor (ALPHA_BF) has been 

determined by applying the baseflow filter program developed by (1995) and modified by 

(1999) to streamflow data measured at the three outlets. One novelty in this study was to 

involve the Manning's roughness coefficient for overland flow (OV_N) and the average slope 

length (SLSUBBSN) parameters that are not commonly used in calibration. The reason behind 

this choice was to correct the tendency of the model to delay the runoff as detected by graphical 

analysis. The remaining parameters were chosen based on the literature (Betrie et al., 2011; 

Van Griensven et al., 2006; Zhang et al., 2008) and their adjusting ranges from the SWAT 

input/Output version 2012 document (Arnold et al., 2012b).  

 

3.2.8. Model performance and uncertainty evaluation 

To evaluate model performance, both statistical and graphical techniques were used as 

recommended by (Moriasi et al., 2007) based on previous published studies. The following 

quantitative statistics were chosen: NSE to quantify the relative magnitude of the residual 

variance (“noise”) compared to the measured data variance, PBIAS for water balance error and 

R2 to describe the degree of collinearity between simulated and measured data, and were given 

for the best simulation. The NSE, R2 and PBIAS were determined using the following equations:     
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Where 
sim

iY and 
obs

iY are the ith simulated and observed discharge, respectively, 
sim

iY  and 
obs

iY  

the mean value of simulated and observed discharge, respectively and n the total number of 

observations.  

The NSE varies between - ∞ and 1 (1 inclusive), with NSE = 1 being the optimal value. The 

optimal value of PBIAS is 0, with low PBIAIS in absolute values indicating accurate model 

simulation. Positive values indicate model overestimation bias, and negative values indicate 

model underestimation bias. R2 ranges from 0 to 1, with higher values indicating less error 

variance, values greater than 0.5 are considered acceptable.  

In the present study, model performance, for a monthly time step, will be judged as satisfactory 

if NSE > 0.50 and PBIAS ±25% for discharge (Moriasi et al., 2007) and if the graphical analysis 

reveals a good agreement between predicted and measured hydrographs. 

The GLUE predictive uncertainties were then quantified by two indices referred to as P-factor 

and R-factor (Abbaspour et al., 2004). The P-factor represents the percentage of observed data 

bracketed by the 95% predictive uncertainty (95PPU) band of the model calculated at the 2.5% 

and 97.5% levels of the cumulative distribution of an output variable obtained through Latin 

hypercube sampling. The R-factor is the ratio of the average width of the 95PPU band and the 

standard deviation of the measured variable. For uncertainty assessment, a value of P-factor > 

0.5 (i.e., more than half of the observed data should be enclosed within the 95PPU band) and 

R-factor < 1 (i.e., the average width of the 95PPU band should be less than the standard 
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deviation of the measured data) should be adequate for this study especially considering limited 

data availability.  

 

3.2.9.  Sensitivity analysis 

A Global Sensitivity Analysis (GSA) was performed after 10,000 simulations on the 12 

parameters included in the calibration process. Only GSA is allowed with GLUE in SWAT-

CUP and can be performed after an iteration. A t-test is then used to identify the relative 

significance of each parameter. T-stat provides a measure of sensitivity and p-value determines 

the significance of the sensitivity. A larger t-stat in absolute value is more sensitive and a p-

value close to zero has more significance (Abbaspour, 2014).  

 

3.2.10. Verification of model outputs 

To evaluate the accuracy of the SWAT model to predict PET, we considered the model average 

annual basin output which was computed by the Hargreaves method (Hargreaves et al., 1985) 

and compared it to PET values calculated with two other methods: the FAO-Penman Monteith 

method and the pan evaporation method. The estimates from those three methods are 

hereinafter referred to as PEThar (for average annual PET estimated by the Hargreaves method), 

PETpen (for average annual PET estimated by the Penman-Monteith method) and PETpan (for 

average annual PET estimated by the pan evaporation method). The modified Penman method 

is taken herein as the standard because it was considered to offer the best results with minimum 

possible error (Allen et al., 1998). Average observed ten-day PETpen were collected and 

computed to obtain average annual value on the calibration-validation period. Monthly 

observed pan evaporation data were used to estimate PETpan. Doorenbos and Pruitt (1975) 

related pan evaporation to reference evapotranspiration, ET0 (or PET) using empirically 

derived coefficients. PET can be obtained by: 
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PET = × pan panK E
 

(5) 

Where Epan represents the pan evaporation in mm d-1, and Kpan the adjustment factor that 

depends on mean relative humidity, wind speed and ground cover.  

As the pan factor in the Bani catchment could not be exactly determined due to lack of 

information about the pan environment and the climate, the average value of 0.7 was used in 

this study. The PBAIS was again used as the evaluation criterion representing the deviation of 

the predicted PET compared to the one considered as the baseline. 

 

3.3. Catchments classification 

The objective of catchment classification in this study joins the second objective of 

classification proposed by Sawicz et al. (2011), i.e., the regionalization of information. Indeed, 

a prediction in ungauged catchments is foreseen within a data sparse region where discharge 

data, if not measured, are incomplete or inconsistent. As discussed by (Hrachowitz et al., 2013; 

Sawicz et al., 2014; Wagener, 2007), a holistic classification framework should combine 

physical characteristics, climate and hydrological functioning of a catchment. The major 

difficulty, which lies within this classification, is the data needs. Such data are not always 

available in developing regions. In addition, as the final objective is to transfer hydrological 

information from gauged to ungauged catchments which are similar, the question is how to 

define this similarity between them? It is evident that we need similarity metrics common for 

both, easily measurable and accessible. However, no discharge data are available at the 

ungauged site; neither are other runoff processes information even in well gauged catchments. 

Consequently, only precipitation and physiographic parameters remain easily available 

everywhere, particularly for the ungauged sites, and these are the conditions that underpin the 

choice of physiographic similarity to be used in this study as a proxy of hydrological 

functioning of a catchment.  
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3.3.1. Catchments and catchments’ attributes 

A total of 28 nested candidate catchments were selected (Figure 3-5), ranging in size from 92 

km2 to 10,910 km2 and spanning across a wide range of environmental gradients of topography, 

precipitation, soil and land use showing a heterogeneous dataset. The study area has not been 

affected by important hydraulic structures able to significantly modify their flow regimes.  

The choice of catchment attributes (CAs) is of great importance. Selected CAs are related to 

the shape (e.g., area, length) and the topography (e.g., slope, elevation) of each subbasin and 

its main tributary reach (e.g., len1, wid1) and were derived by application of the SWAT model 

(see Table 3-1 for input spatial and climatic data). The selection of the appropriate CAs can 

also depend on the physical meaning of the model parameters (Mps) that will subsequently be 

involved in information regionalization. For instance, in the SWAT model, the Curve Number 

parameter (CN2), which was demonstrated to be the most sensitive Mps in the study area (at 

the end of the modelling process), depends on the soil and land use characteristics of the 

catchment (Sellami, 2014). Therefore, two additional attributes related to land use and soil were 

considered. There exist 3 land use categories (Agricultural Land Generic, Savannah and Forest) 

and 3 major soil types (Ferric Luvisol, Acrisol and Nitosol, in this order). 
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Figure 3-5. Study catchments and Digital Elevation Model of the Bani basin. 

 

Therefore, in the preliminary analyses, we tested 10 different land use and soil combinations: 

9 combinations in which we considered 1 land use and 1 soil descriptors, and 1 combination 

where all land uses and soils were kept at a time. These combinations were input in a Principal 

Component Analysis and we selected the one which yielded the smaller number of dimensions 

that explains the highest variability of the dataset (see the section 4.2.2 for details on the 

method). So, only Agricultural Land Generic (AGRL) and Ferric Luvisol (Lf) were retained 

herein and represent indeed the dominant land use and soil, respectively. AGRL and Lf were 

calculated using the following equations: 
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AGRL =  (
AAGRL

A
) ∗ 100 (6) 

Lf =  (
ALf

A
) ∗ 100 (7) 

Where AAGRL is the area covered by AGRL within a watershed, ALf is the area covered by Lf, 

and A is the total area of the watershed.  

Last, climatic characteristics such as long-term annual precipitation or the aridity index have a 

relevant impact on hydrological behaviour of a catchment (Wagener, 2007), and were 

commonly used in the literature. Thus, average annual precipitation was computed for each 

sub-catchment on the period 1981-2000. Finally, the selection ended up with 16 physiographic 

and climatic descriptors given in Table 3-8.  

Table 3-8. Summary of catchment attributes derived by the SWAT model as input for multivariate 

statistical analysis on the Bani catchment. 

Attribute Description Units 

Slo1 Subbasin slope % 

Len1 Longest path within the subbasin m 

Sll Field slope length m 

Csl Subbasin tributary reach slope m 

Wid1 Subbasin tributary reach width m 

Dep1 Subbasin tributary reach depth m 

Lat Latitude of the subbasin centroid dd 

Long Longitude of the subbasin centroid dd 

Elev Mean elevation of the subbasin m 

ElevMin Minimum elevation of the subbasin m 

ElevMax Maximum elevation of the subbasin m 

Shape_Leng Subbasin perimeter m 

Shape_Area Subbasin area m2 

*P  Average annual precipitation on the subbasin mm 

AGRL Proportion of Agricultural Land on the subbasin % 

Lf Proportion of ferric Luvisol on the subbasin % 

DD: Decimal Degree 
* Calculated on the period 1981-2000 

 

3.3.2. Multivariate statistical analyses 

The proposed methodology can be separated into two main components: the clustering and the 

analysis of dominant controls of similarity thanks to the description of explanatory variables.  
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Hierarchical Clustering on Principal Components 

PCA and CA are frequently used in hydrological studies (Daigle et al., 2011; Kileshye Onema 

et al., 2012; Sawicz et al., 2011), and commonly applied in a pre-processing of a set of variables 

prior to the classification, to provide a convenient lower-dimensional summary of the dataset, 

or as a classification tool itself. PCA reduces a dataset containing a large number of variables 

to a dataset containing fewer new variables that are linear combinations of the original ones. 

These linear combinations are mutually uncorrelated and chosen to represent the maximum 

possible fraction of the variability contained in the original data and are called Principal 

Components (PCs). PCs are defined each by eigenvectors, i.e., axes aligned along the direction 

of the maximum joint variability of the dataset, and an eigenvalues, i.e., the variance of the PCs 

(Wilks, 2006). CA is an exploratory data analysis tool that attempts to separate observations 

into groups called clusters by using the degree of similarity between individual observations. 

The CA procedure implemented in this study is the hierarchical and agglomerative clustering. 

In the beginning of this procedure, each observation is considered as a group. In the subsequent 

steps, two groups that are closest are successively merged until, at the final step, a single cluster 

is reached containing all the observations.  

Multivariate statistics used in this study were performed under R package FactoMineR (Husson 

et al., 2009; Lê et al., 2008), version 1.28. The methodology utilized was based on the 

Hierarchical Clustering on Principal Components (HCPC) function proposed by (Husson et al., 

2010). This method combines three exploratory data analysis methods, Principal Component 

methods, Hierarchical Clustering and Partitioning, to improve data analysis. The chosen 

Principal Components method was the PCA, because retained CAs are quantitative variables. 

PCA was used herein as a pre-process for clustering, i.e., the hierarchical clustering is solely 

built on the determined PCs. In that case, a reduced dataset which represents the most important 

variability in the observations was obtained, and leads to a more stable clustering than the one 
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obtained from original variables (Husson et al., 2010). PCA was tested on 10 datasets each 

made up by the first 14 descriptors described in Table 3-1 added to a combinations of land use 

(numbered 1, 2 and 3) and soils (numbered a, b and c). Therefore, the resulting input datasets 

were hereinafter referred to as 1-a, 1-b, 1-c, 2-a, 2-b, 2-c, 3-a, 3-b, 3-c, and 123-abc, the latter 

referring to the dataset including all land uses and soil types. Input variables, i.e., CAs, were 

first standardized because they are not measured on comparable scales. The appropriate number 

of PCs was chosen based on the Scree plot technique (Jolliffe, 2002). The Scree plot is a graph 

representing the eigenvalues as a function of PCs number. On this graph, the point separating 

a steeply sloping portion and a gently one, corresponds to the truncated number of PCs. As the 

objective of PCA used in this study was for dimensionality reduction, then the combination 

that will give no more than 2 PCs that explain the highest percentage of the total variance of 

the original data, will be kept for subsequent analysis. Then, a hierarchical agglomerative 

clustering was performed on the PCs previously determined. The measure of distance between 

data points was based on the Euclidean distance (the same was used in PCA) and the 

agglomerative method for merging two clusters used the Ward's criterion. This criterion is 

based on the Huygens theorem according to which the total inertia (variance) of a dataset can 

be decomposed in within-group and between-group inertia. Equation (3) gives the formula for 

calculating the total inertia. 

     
2

2 2

1 1 1 1 1 1 1 1

,
q qI IQ Q QK K K

qkiqk k q k iqk qk

k q i k q k q i

x x I x x x x
       

           (8) 

Total inertia  = Between-group inertia   + Within-group inertia 

Where xiqk is the value of the variable k for the individual i of the cluster q, qkx is the mean of 

the variable k for cluster q, kx is the overall mean of variable k and Iq is the number of 

individuals in cluster q. At the initial stage, the within-group inertia is null and the between 

group inertia is maximum and equal to the total inertia of the dataset as at this level, each 

individual represents a single-member group. At the final step, all the members are merged in 
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a single group, the between-group inertia is therefore null and the within-group inertia is 

maximum and equal to the total. At each step of the algorithm, the pair of groups to be merged 

is chosen that minimizes the growth of within-group inertia (inversely, that maximizes the 

growth of between-group inertia) at each step of the algorithm.  

The last step consists in choosing the appropriate number of clusters when it is not pre-assigned, 

that is, the stopping point of clustering that maximizes similarity within clusters and maximizes 

dissimilarity between clusters. HCPC function suggests an “optimal” number Q of clusters 

when the decrease in within-group inertia between Q - 1 and Q is from far greater than the one 

between Q and Q + 1 (Husson et al., 2010) for a thorough description of the HCPC function). 

Results of HCPC function can be presented in different ways: (1) A factor map, which displays 

results of the hierarchical clustering on the map induced by the first PCs, (2) a 2-dimensional 

dendrogram or hierarchical tree, and (3) a 3-dimensional dendrogram in which the hierarchical 

tree is incorporated into the factor map. The latter representation can solely be used to get an 

integrated visualization of the dataset. However, dispersion of data points is somehow masked 

in that way. Therefore, the factor map was presented in the results section for a better 

visualization of individuals’ dispersion on the plan formed by PCs, while the hierarchical tree 

offers a good insight of the variability increase between clusters. 

 

Analysis of dominant causes of similarity between catchments 

A core issue in catchment classification is to describe clusters according to the main factors 

that cause similarity among individuals. Addressing this issue will help knowing, in addition 

to which catchments are similar, why they are similar. This can be achieved through the 

description of input variables, i.e., CAs. A v-test was performed for each variable 

corresponding to the test: “The mean of the category is equal to the overall mean”. The mean 

of the category is the average in the cluster and the overall mean is the average for the whole 
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data set. An absolute value of the v-test greater than 1.96 means that the variable is significant. 

The sign of the v-test indicates whereas the mean of the cluster is lower or greater than the 

overall mean. A p-value less than 0.05 gives the significance of the test (more details can be 

found in (Husson et al., 2011).  

The v-test is calculated with the following Equation (4): 

2
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qk kx x
v test

S N n

n N


 






 
(9) 

where qkx is the mean of the variable k for cluster q, kx is the overall mean of variable k, n is 

the number of individuals in cluster q, N is the total number of individuals and S² is the variance 

of the dataset.  

 

3.4. Model Parameters Regionalization 

3.4.1. Study catchments and modeling framework 

This study was conducted on the Bani catchment for which a detailed description was given in 

sections 3.2 and 3.3. A total of seven mesoscale catchments, ranging in size from 1,552 to 

8,417 km2, were selected (Figure 3-6) on the basis of data availability and span across different 

physiographic and climatic regions (catchments description is given in Table 3-9). It is 

important to note that the study area is characterized by weak data density (around 7 stream 

gauges per 100,000 km2) and high distances between gauges (more than 300 km for the 

highest).  

Calibration at gauged catchment is a prerequisite for regionalization of model parameters. To 

this end, we calibrated the SWAT model against a 10-year discharge record (1983-1992) and 

validate it on 5 other years (1993-1997) for most of the catchments. The adjustment between 

observed and simulated river flow has been achieved by tuning 12 SWAT model parameters 

identified as the most sensitive on the study area. The approach of estimating these parameters 
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has been developed in section 3.2.7 for calibration and validation at Douna, Pankourou and 

Bougouni gauging stations. The same approach was adopted here for the 4 additional stations; 

Dioila, Kouro 1, Madina Diassa and Debete (Figure 3-6 and Table 3-9). We defined a 

behavioral parameter set, as the one which produced a simulation with a NSE equal to 0.5 or 

greater. When the calibration task identifies one or more behavioral parameter sets on a 

catchment, this one is considered as a donor catchment, i.e., from which the optimized model 

parameters could be transferred to an ungauged catchment, else it is solely considered as a 

target catchment, i.e., it can only receive model parameters from a potential donor.  

 

Figure 3-6. Localization of the test catchments for model parameters transfer on the Bani basin. 
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Table 3-9. Description of candidate catchments for model parameters regionalization. 

Subbasin Outlet 
Area 

(km2) 

*Physical 

cluster 

Precipitation 

(mm) 

Calibration 

period 

Regionalization 

period 

1 Douna 5925 C2 653 1983-1992 1983-1997 

4 Dioila 3333 C2 794 1983-1992 1983-1997 

7 Kouoro1 1552 C1 842 1983-1991 1983-1991 

16 Pankourou 1620 C3 1036 1983-1992 1983-1997 

18 Bougouni 2978 C3 1107 1983-1992 1983-1997 

25 Debete 5675 C4 1294 1983-1989 1983-1989 

26 Madina Diassa 8417 C4 1200 1983-1992 1983-1997 
*See Chapter IV for details. 

 

3.4.2. Regionalization approaches and similarity frameworks 

In this study, the objective of the regionalization is to predict the entire discharge hydrograph, 

i.e., the time series of river discharge, at ungauged basins. The hydrograph has the advantage 

to be “… the most complete runoff signature…” Blöschl et al. (2013) because resulting from 

the interaction between all the processes within a catchment. So, all the other signatures can be 

derived from it. We applied 2 regionalization techniques based on similarity measure between 

gauged and ungauged catchments. The first approach is the spatial proximity, according to 

which catchments that are geographically close to each other are expected to have similar 

behavior. The nearest neighbor method is especially relevant in the case of very data sparse 

region (Goswami et al., 2007). In this study, the entire model parameter set is transposed from 

the closest donor to the receptor catchment. The distance measure between catchments is 

defined by the geographical distance between catchments’ centroids. In the physical similarity 

approach, the search of donor catchment was restricted to the same cluster as the target 

catchment. As an important step in physiographic similarity, a classification scheme was 

conducted prior to the regionalization (in Chapter III) to determine clusters of similar 

catchments based on their physioclimatic characteristics. A combined method can be 
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interpreted as when the donor is physically similar to the ungauged catchment and is located in 

its vicinity as well.  

However it has been pointed out that the MPs from the nearest catchment will not necessarily 

result in the best simulation at the target catchment (Oudin et al., 2008). In addition, many 

authors (Patil and Stieglitz, 2012; Viviroli et al., 2009) suggest the use of multiple neighbors 

in order to find the best regionalization efficiency. But such an approach is not possible in the 

present study because we are in a case of very data-sparse region. The stream gauge density 

considered is low, (1 gauge per 14300 km2) and a gauge catchment can be very far from an 

ungauged catchment. Therefore, to avoid misleading effects of small number of test 

catchments, we considered all the possible cases on model parameters transfers without any 

consideration of spatial or physical similarity. In other words, if n is the total number of donors, 

at a target i, we transferred one by one, the parameter set of the n-1 donors, resulting in n-1 

individual simulations. The entire set of optimized SWAT model parameters is transposed 

without any modification from the donors to the target catchment to achieve discharge 

hydrograph without need of any measurement. The resulting simulations were then discussed 

according to the aforementioned regionalization methods to draw conclusions and hypotheses 

related to which method performs best.  

 

3.4.3. Evaluation of the regionalization performance and prediction uncertainty 

The aim of this step is to assess the performance and prediction uncertainty of parameters 

regionalization in reproducing flows in ungauged basins. For this assessment, the Nash-

Sutcliffe Efficiency (NSE) was calculated between the simulated and observed hydrographs for 

the entire simulation period 1983-1997. The length of the regionalization period has been 

chosen long enough to cover both calibration and validation periods at gauged catchments. So, 

we can test at a time the reliability of the transfer of MPs to perform under different flow 
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conditions of space (from gauged to ungauged) and time (from calibration to validation period). 

The performance was judged as satisfactory if NSE > 0.50 and PBIAIS < ±25%, and if the 

graphical analysis reveals a good agreement between predicted and measured hydrographs. 

Regarding uncertainty assessment, the P-factor was used to measure the percentage of observed 

data enclosed within the uncertainty band whose width is represented by the R-factor. In this 

study, we define adequate prediction uncertainty when we obtained a value of P-factor > 0.5 

(i.e., more than half of the observed data are enclosed within the 95PPU band) and R-factor < 

1 (i.e. the average width of the 95PPU band is less than the standard deviation of the measured 

data) especially considering limited data availability.  

 

3.4.4. Assessment of the hydrological similarity 

Many definitions of hydrological similarity exist. Following Oudin et al. (2010), hydrological 

similarity between two catchments can be defined as the ability of the optimized parameter set 

of one to adequately simulate the streamflow of the other. This assumption explains the use of 

a rainfall-runoff model for making prediction in ungauged catchments.  

Our objective is to explore the relationship between spatial proximity and physical similarity 

on one hand, and hydrological similarity on the other. To this end, the performances of the 

resulting hydrographs are compared in order to identify the approach that gives the highest 

performance. We adopted the criterion defined by Oudin et al. (2010) who suggest that two 

catchments A and B are hydrologically similar “if, on target catchment A, the efficiency 

reached by the model using the parameters obtained by calibration on catchment B is greater 

than 0.9 of the model efficiency obtained in calibration on catchment A, then this catchment B 

is considered as hydrologically similar to catchment A”. That means, all catchments should be 

calibrated so that a comparison between efficiencies obtained by calibration and by 

regionalization is feasible. We adapted this definition to our context of data scarcity and say: 
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if the performance reached at the target using the parameters obtained at the donor is greater 

than 0.5, 0.65 or 0.75 the performance reached by calibrating at the target, then the hydrological 

similarity between donor and target can be judged as satisfactory, good or very good, 

respectively. In addition, the transfer of parameters from one to another should work in both 

ways in order to call the catchments “mutually similar”.  
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Chapter IV 
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4.  Results and Discussions 

 

4.1. Multi-site Validation of the SWAT Model on the Bani Catchment: 

Model Performance and Predictive Uncertainty* 

  

*Results published in Chaibou Begou et al. (2016) 

Reference:  

J. Chaibou Begou, S. Jomaa, S. Benabdallah, P. Bazie, A. Afouda, and M. Rode, (2016). 

Multi-site validation of the SWAT model on the Bani catchment: Model performance and 

predictive uncertainty. Water, 8, 178.  
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The objective of this Chapter is to assess the performance of the SWAT model and its predictive 

uncertainty on the Bani at catchment and subcatchment levels. More specifically, this meant 

to:  

(i) set up a hydrological model for the Bani catchment using the SWAT program;  

(ii) calibrate the model at the catchment outlet at daily and monthly time steps and 

assess the prediction performance and uncertainty;  

(iii) evaluate the spatial performance of the watershed-wide model within the catchment 

by validating it at two internal stations 

(iv) And calibrate the model at the sub-catchments separately and provide a comparative 

assessment of the model performance at different spatial scales.  

 

4.1.1. The catchment scale model 

 

Global model performance and predictive uncertainty 

In the preliminary analyses we tested different land use and soil databases and kept for 

subsequent analysis the simulation of databases combination crop2soil2, which yielded the 

highest default, i.e. before calibration, performance (NSE = 0.09). The impact of land use 

database was not so significant, but the type of soil database used to setup the model was very 

decisive in obtaining a simulation with the smallest overall error. SWAT-CUP output results 

are presented as 95PPU as well as the best simulation (Table 4-1).  

Overall, calibration and validation of the hydrological model SWAT on the Bani catchment at 

the Douna outlet yielded good results in terms of NSE and R2 for both daily and monthly 

timesteps. 364 simulations for daily calibration against 588 for monthly calibration returned a 

NSE ≥ 0.5 and were thus considered as behavioral. Satisfactory to very good NSE and R2 values 

were obtained and were greater than 0.75 for the best simulations. Moreover, it can be noticed 
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that the performance is slightly lower for daily calibration compared to monthly calibration, 

but always higher for the validation period. Only one year (1984) over ten showed very low 

performance with a NSE of 0.23. 

Table 4-1. Model performance statistics and predictive uncertainty indices of the SWAT model for 

the Bani catchment at Douna, Pankourou and Bougouni discharge gauging stations. 

Time 

step 

 Calibration (1983-1992)  Validation (1993-1997) 

Criterion Douna Pankourou Bougouni  Douna Pankourou Bougouni 

 

 

Daily 

NSE 0.76 0.73 0.66  0.85 0.77 0.37 

R2 0.79 0.74 0.68  0.87 0.83 0.57 

PBIAS (%) - 12.23 6.08 - 15.01  - 23.26 - 19.57 - 59.53 

P-factor 0.61 0.68 0.60  0.62 0.63 0.51 

R-factor 0.59 0.41 0.57  0.51 0.29 0.35 

 

 

Monthly 

NSE 0.79 0.78 0.72  0.85 0.81 0.47 

R2 0.82 0.78 0.76  0.88 0.91 0.68 

PBIAS (%) - 15.78 5.93 - 13.14  - 26.91 - 19.54 - 58.40 

P-factor 0.65 0.71 0.58  0.70 0.67 0.55 

R-factor 0.65 0.45 0.54  0.55 0.31 0.32 

 

The water balance prediction can be considered as accurate at a daily time-step but become 

hardly satisfactory for monthly calibration, which is characterized by higher PBIAIS values 

showing increasing errors in the prediction. For example, the PBIAIS values increased from 

daily to monthly time intervals: from - 12% to - 16% in the calibration period and from - 23% 

to - 27% in the validation period (Figure 4-1). With regard to high flow events, visual analysis 

of simulated and observed hydrographs represented in Figure 3 came out with the following 

results: timing of peak is well reproduced although simulation tends to underestimate peak 

flows especially during dry years (e.g., 1983, 1984, and 1987).  

The predictive uncertainty of the model, as indicated by the P-factor and R-factor, is adequate, 

though being larger during peak flow and recession periods (reflected by larger 95PPU band). 

On a daily basis for instance, 61% of the observed discharge data are bracketed by a narrow 

95PPU band depicted by the R-factor < 1 (Figure 4-1). It has been noted that the entire 

uncertainty band is, however, very large during the year 1984. 
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Figure 4-1. Simulated and observed hydrographs at Douna station at (a) daily and (b) monthly 

timesteps along with calculated statistics on calibration and validation periods.  

 

Verification of average annual basin values 

Table 4-2 reports the average annual values of the SWAT model simulated on the Bani 

catchment. However, there are not available data to enable a full verification of all model 

outputs at the watershed scale. In this case, we focused on available PET and biomass for which 

there exist regional values.  

Table 4-2. Average annual basin values of precipitation (P), Evapotranspiration (ET), Potential 

Evapotranspiration (PET) and biomass as SWAT outputs on the Bani catchment. 

Period P (mm) ET (mm) 

 

PET (mm)a 

 Biomass (ton ha-1) 

 
Agricultural 

Land Generic 
Savannah Forest 

Calibration 

(1983-

1992) 

960.4 895 1925.7  1.18 0.27 3.09 

Validation 

(1993-

1997) 

1049.5 975 1925.1  1.72 0.53 5.51 

a Average annual PET estimated by the Hargreaves method (herein used by SWAT). 
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The analysis of Table 4-2 came out with several results. On average, PEThar presented a 

positive PBIAS of 11% compared with observed PETpen herein equal to 1737 mm and the 

latter is very close to PETpan estimated to 1755 mm. These results give a clear advocate of 

overestimation of PET by the SWAT model over the Bani catchment, an overestimation that 

can be attributed to the Hargreaves method used herein by the model to compute PET.  

To further investigate the model’s accuracy, we evaluated predicted biomass values over the 

calibration/validation period against reported values for the study area. Simulated biomass was 

on average 4.3 ton ha-1 for forest and 1.45 ton ha-1 for agricultural land and both are in the 

ranges of observed values in the region (Laurent and Ruelland, 2010; Marie et al., 2007). 

Nevertheless, this component is far underestimated for savannah with a simulated value of 0.4 

ton ha-1. 

 

Sensitivity analysis  

There is a wide range of uses for which sensitivity analysis is performed. Based on the 12 

selected SWAT parameters (ALPHA_BF being fixed), a GSA was used herein for identifying 

sensitive and important model parameters in order to better understand which hydrological 

processes are dominating the streamflow generation in the Bani catchment.  

Sensitivity analysis results of 10 000 simulations are summarized in Table 4-3. The first three 

most sensitive parameters (CN2, OV_N and SLSUBBSN) are directly related to surface runoff, 

reflecting therefore the dominance of this process on the streamflow generation in the Bani 

catchment. Processes occurring at soil level followed at the second position as pointed out by 

the sensitivity of ESCO and SOL_AWC. Groundwater parameters happened in the last position 

demonstrating the low contribution of the latter to flows measured at the Douna outlet. The 

same sensitive parameters were identified by daily and monthly calibrations with only different 

ranks for soils parameters (ESCO and SOL_AWC). 
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Table 4-3. Sensitivity of the calibrated SWAT model parameters on the Bani catchment at Douna on a 

daily time interval. 

Parameter Description 
Input calibration 

range 

Global Sensitivity 

analysis 

t-stat p-value 

CN2 SCS runoff curve number II (-) ± 20% - 54.03083 0.00000 

OV_N Manning's "n" value for overland flow (-) 0.01-30 11.41603 0.00000 

SLSUBBSN Average slope length (m) 10-150 8.87352 0.00000 

ESCO Soil evaporation compensation factor (-) 0.01-1 - 6.08880 0.00000 

SOL_AWC 
Available water capacity of the soil layer 

(mm H2O/mm sol) 
± 20% 2.89864 0.00376 

GW_DELA

Y 
Groundwater delay (days) 0.0-50 1.81341 0.06980 

GWQMN 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 

(mm H2O) 

0.0-4000 - 1.51853 0.12891 

REVAPMN 
Threshold depth of water in the shallow 

aquifer for "revap" to occur (mm H2O). 
0-500 - 0.64939 0.51610 

RCHRG_D

P 
Deep aquifer percolation fraction (-) 0-1 0.46408 0.64260 

GW_REVA

P 
Groundwater "revap" coefficient (-) 0.02-0.2 - 0.12613 0.89963 

SURLAG Surface runoff lag coefficient (-) 0.05-24 - 0.07433 0.94075 

ALPHA_BF Baseflow alpha factor (d-1)  0.034-0.034 ND ND 

ND: Not Determined  

 

 

 

Spatial validation  

The results of the spatial validation were divergent according to the location (Figure 4-2). For 

instance at Pankourou, the same parameters sets determined at Douna produced a good 

simulation on a monthly basis (satisfactory for daily validation) whereas predictive uncertainty 

remained adequate and all met our requirements (NSE > 0.5, P-factor > 0.5 and R-factor < 1). 

In addition, the water balance was reasonably predicted at both timesteps. In contrast, it has 

been recorded a complete loss of model performance at Bougouni with unsatisfactory NSE 

values and more uncertainty related to input discharge as expressed by a lower percentage of 

observed data (P-factor = 0.55 et 0.57 for daily and monthly validation) inside the 95PPU band 

(Figure 4-2). Accordingly, important uncertainty could be attributed to observed discharge at 

Bougouni. 
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Figure 4-2. Spatial validation of the SWAT model on the Bani catchment. The model was turned at 

Pankourou ((a) daily and (b) monthly timesteps) and at Bougouni ((c) daily and (d) monthly 

timesteps) by using the same behavioral parameter sets determined at the Douna outlet on the 

period 1983-1992. 

   

4.1.2. The subcatchment model 

Statistical evaluation results of the subcatchment calibration are presented in Table 4-1 and 

time series of observed and simulated hydrographs are shown on Figures 4-3 and Figure 4-

4. Good to very good performance was obtained at Pankourou with accurate predictive 

uncertainty. However the validation period remained unsatisfactorily simulated at Bougouni. 

A comparative analysis of the catchment and subcatchment calibration performances came 

out with the following results:  

 When calibrated separately, the prediction at Pankourou was slightly better, but greatly 

improved at Bougouni compared to when the catchment wide model was applied. 
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 The total uncertainty of the model is smaller at Pankourou (smaller R-factor and larger P-

factor) than at the whole catchment, but larger at Bougouni. 

 The water balance is better simulated at both internal stations compared to the watershed-

wide water balance as depicted by smaller PBIAIS values, except always in the validation 

period at Bougouni.  

 The model performance in terms of NSE and R2 was higher at the watershed-wide level 

than at the sub-watershed level. 

Overall, these results revealed that further calibration at the internal gauging stations was 

synonymous with gain of performance at the subcatchment level.  

 

Figure 4-3. Simulated and Observed hydrographs at Pankourou station at (a) daily and (b) monthly 

timesteps along with calculated statistics on calibration and validation periods. 
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Figure 4-4. Predicted and measured discharges at Bougouni station at (a) daily and (b) monthly 

intervals during the calibration and validation periods with their corresponding statistics. 

 

4.1.3. Discussion and conclusions 

 

Model performance and predictive uncertainty  

In an effort to assess the performance of the SWAT model on the Bani catchment, we calibrated 

and validated the model at multiple sites on daily and monthly timesteps by using measured 

climate data. There were no statistically significant differences in model performance among 

time intervals. Using guidelines given in Moriasi et al. (2007), the overall performance of the 

SWAT model in terms of NSE and R2 can be judged as very good especially considering limited 

data conditions in the studied area. On a monthly basis, we obtained at the Douna outlet a NSE 

value equal to 0.79 for the calibration period (0.85 for the validation period). These results are 

greater than the ones of the studies by Schuol and Abbaspour (2006) and Schuol et al. (2008a) 
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at the same outlet. Schuol and Abbaspour (2006) reported indeed a negative NSE (between -1 

and 0) for the monthly calibration and a value ranging between 0 and 0.7 for monthly 

validation, while (Schuol et al., 2008a) obtained a NSE between 0 and 0.70 for both monthly 

calibration and validation. However, Laurent and Ruelland (2010) reported a greater 

performance (NSE values varying between 0.81 and 0.91 for calibration and validation period, 

respectively) but on a coarser time step (average annual basis). The water balance is less well 

simulated, especially for monthly time step with a PBIAIS greater than 25% in absolute value.  

The quantified predictive uncertainties are surprisingly satisfactory. At the end of the daily 

calibration, the model was able to account for 61% of observed discharge data (65% for 

monthly calibration) in a narrow uncertainty band. The quantified predictive uncertainties 

obtained herein are close to the results of (Schuol et al., 2008a) who estimated the observed 

discharge data bracketed by the 95PPU between 60% and 80% for monthly calibration (40% 

and 60% for monthly validation). However, one explanation that could be attributed to the 

small uncertainty band we obtained, is that model predictive uncertainty derived by GLUE 

depends largely on the threshold value to separate “behavioral” from “non-behavioral” 

parameter sets (Mantovan and Todini, 2006; Montanari, 2005).This means, a high threshold 

value (as in this case) will generally lead to a narrower uncertainty band (Blasone et al., 2008; 

Viola et al., 2009; Xiong and O’Connor, 2008) but this will be achieved at the cost of bracketing 

less observed data within the 95PPU band. In addition, GLUE accounts partly for uncertainty 

due to the possible non-uniqueness (or equifinality) of parameter sets during calibration and 

could therefore underestimate total model uncertainty. For instance, Sellami et al. (2013) 

showed that the GLUE predictive uncertainty band was larger and surrounded more 

observation data when uncertainty in the discharge data was explicitly considered. Engeland 

and Gottschalk (2002) demonstrated that the conceptual water balance model structural 

uncertainty was larger than parameter uncertainty. In spite of all the aforementioned limitations 
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of GLUE, we succeeded in enclosing interestingly most of the observed data within a narrow 

uncertainty band (the sought adequate balance between the two indices) hence increasing 

confidence in model results. These are encouraging results showing, on one hand, the good 

performance of the SWAT model on a large soudano-sahalian catchment under limited data 

and varying climate conditions and, on the other hand, the capability of observed climate and 

hydrological input data of this catchment, even though contested, to provide reliable 

information about hydro-meteorological systems prevailing in the region.  

It has been also noted that the model did not perform well during the year 1984 particularly 

(lower performance and larger uncertainty). This loss of performance can be attributed to the 

disruption in rainfall-runoff relationship consequence of consecutive years of drought, which 

has prevailed in the beginning of the eighties. The over-predicted PET on the Bani catchment 

could be attributed to the Hargreaves method, which could give a greater estimate of PET than 

it actually is. Ruelland et al. (2012) applied a temperature-based method given by Oudin et al. 

(2005) and provided a similar estimate of PET (1723 mm) than the values calculated herein by 

the Penman and pan evaporation methods hence corroborating our results. These results 

demonstrated the valuable of pan evaporation measurements for estimating PET and that the 

simple pan evaporation method appears to be suited for application in the study area and can 

be used when all the climatic data required by the Penman method are missing. 

As far as biomass is concerned, the underestimation of this component in savannah could be 

explained by inappropriate specification of all categories in the land use map grid to be 

modelled by SWAT as savannah or inaccurate savannah characteristics added in the SWAT 

database and directly affecting biomass production such as BIO_E and LAI parameters, among 

others. 
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Advance in understanding of hydrological processes  

The GSA confirms what has already been reported on and around the Bani catchment about 

the contribution of hydrological processes to streamflow generation. In order to better 

understand the origin of flows at Kolondieba (a tributary of the Bani River), Dao et al. (2012) 

showed that Groundwater contribution to the hydrodynamic equilibrium at the outlet of 

watershed Kolondieba is small and the direct flow from the soil surface governs the runoff 

process. This fact can be explained by the double impact of a general impoverishment of 

shallow aquifers due to reduction in precipitation in West Africa in general since the great 

drought of the seventies as well as a concurrent increase of the recession coefficient of the Bani 

river as demonstrated by Bamba et al. (1996) and Mahé (2009) with a decrease of baseflow 

contribution to total flow in absolute and relative values as corollary. 

 

Spatial performance  

The results of different calibration and validation techniques showed varying predictive 

abilities of the SWAT model through scales. Firstly, it can be derived from these findings that 

model performance in terms of NSE and R2 was higher on the watershed-wide level than on the 

sub-watershed level. However, this could be attributed to a compensation between positive and 

negative errors of processes occurring at a larger scale (Cao et al., 2006; Wellen et al., 2015). 

This suggests that calibrating a model only at the basin outlet leads to an overconfidence in its 

performance than at the sub-basin scale. Secondly, individual calibration of subcatchment 

processes expectedly improved model accuracy in predicting flows at the internal gauging 

stations, due to reducing heterogeneities with downsizing space, and is especially beneficent 

while the donor and receiver catchments are substantially different. Finally, prediction 

uncertainty appears to decrease with reducing spatial scale but increases with humidity as 

shown by the lower performance recorded at Bougouni. The inability of the model to perform 
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during the validation period at Bougouni could be attributed to the structure of the validation 

period which is substantially different to that of calibration, and is solely composed by average 

to wet years while in contrast, it is noted the occurrence of dry, average and wet years during 

the calibration period. 

These results have an important role to play in the calibration and validation approaches of 

large-area watershed models and constitutes a first step to model parameters regionalization 

for prediction in ungauged basins.  

 

Conclusions  

In this study, the performance of the widely-used SWAT model was evaluated on the Bani 

catchment using both split-sample and split-location calibration and validation techniques on 

daily and monthly intervals. The model was calibrated at the Douna outlet and at two internal 

stations. Freely available global data and daily observed climate and discharge data were used 

as input for model simulation and calibration. Calibration and validation, uncertainty and 

sensitivity analyses were performed with GLUE within SWAT-CUP. Both graphical and 

statistical techniques were used for hydrologic calibration results evaluation. 

Evapotranspiration and biomass production outputs were verified and compared to regional 

values to make sure these components were reasonably predicted. Sensitivity analysis 

contributed to a better understanding of the hydrological processes occurring at the study area. 

Final results showed a good SWAT model performance to predict daily as well as monthly 

discharge at Douna with acceptable prediction uncertainty despite the poor data density and the 

high gradient of climate and land use characterizing the study catchment. This performance is 

somehow lower at internal sub-catchments level when the global parameters sets are applied, 

especially at the one with higher humidity and dominated by forest. However, subcatchment 

calibration induced an increase of model performance at intermediate gauging stations as well 
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as a decrease of total uncertainty. With regard to predicted PET, this component is 

overestimated by the model when the Hargreaves method is applied in that specific region 

while biomass production remained low in savannah land use category. The GSA revealed the 

predominance of surface and subsurface processes in the streamflow generation of the Bani 

River.  

Overall, this study has shown the validity of the SWAT model for representing globally 

hydrological processes of a large-scale soudano-sahelian catchment in West Africa. Given the 

high spatial variability of climate, soil and land use characterizing the catchment, additional 

calibration is however needed at subcatchment level to ensure that predominant processes are 

captured in each subcatchment. Accordingly, the importance of spatially distributed 

hydrological measurements is demonstrated and constitute the backbone of any type of 

progress in hydrological process understanding and modeling. The calibrated SWAT model for 

the Bani can be used to assess the current and future impacts of climate and land use change 

on water resources of the catchment, a more and more necessary information awaited by water 

resources managers. Knowing this information, a strategy of adaptation in response to the 

current and future impacts can be clearly proposed and the vulnerability of population can 

therefore be reduced. More widely, this impact study can increase the transferability of the 

model parameters from the Bani subcatchment to another ungauged basin with some 

similarities, and then predicting discharge without the need of any measurement. These 

findings are very useful especially in West Africa, where many river basins are ungauged or 

poorly gauged.  
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4.2. Catchment Classification: Multivariate Statistical Analysis for 

Physiographic Similarity*   

*From the original idea of Chaibou Begou et al., 2015 

Reference:  

J. Chaibou Begou, P. Bazie and A. Afouda, (2015). Catchment classification: multivariate 

statistical analyses for physiographic similarity in the Upper Niger Basin. IJERA Vol. 5, Issue 

9, (Part - 1), pp.60-68  
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The main objective of this chapter was to determine a physiographic and climatic similarity 

framework between catchments located on the Bani basin. The specific objectives were to:  

(1) Perform a hierarchical clustering of catchments based on their physiographic and climatic 

characteristics 

(2) And determine the main factors that control similarity between catchments.  

This study provides the first ever quantification of similarity among catchments with respect 

to physiographic characteristics on a large tropical river basin at finer spatial scale. Neither 

descriptors, nor statistics themselves are actually novel in the broad literature, but their 

combined use in that particular area to evaluate the gain of homogeneity with increasing 

number of clusters is sought. In other words, the questions that will be addressed in this study 

are:  

(i) Can the Bani be further separated into similar groups of catchments based on 

physio-climatic characteristics?   

(ii) If so, what are the dominant controls on similarity between catchments? 

(iii) And how much do we gain in system homogeneity when moving from the whole 

dataset to the optimal number of groups? 

 

4.2.1. Catchments clustering  

In this section, a brief description of the intermediate results of PCA is given. PCA was repeated 

10 times and the most successful result was recorded on the combination 1-a that permitted to 

determine 2 PCs which explains the highest cumulative variance (76.10%) as compared to 

other combinations that gave either smaller variance or more PCs. Results can be visualized on 

Figure 4-5. The percentage of the joint variability of the original dataset explained by each 

dimension is also given. The subsequent clustering was then performed on retained PCs.  
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Results of the hierarchical clustering are presented on Figures 4-5 and 4-6. Figure 4.5 displays 

results of the hierarchical clustering on the map induced by the first PCs. Four clusters were 

identified that maximize the within-group similarity while maximizing the between-group 

dissimilarity. Cluster 1 (C1) contains 5 catchments (4 catchments if we consider the number 

21 as an outlier). 

 

Figure 4-5. Hierarchical clustering representation on the map induced by the first 2 Principal 

Components on the Bani catchment. Sub-catchments are coloured according to the cluster they 

belong to, the barycenter of each cluster is represented by a square and Dim1 and Dim2 are the 

first two Principal Components on which the hierarchical clustering is built. 

 

It is worth noting that these catchments have the smallest sizes in the dataset and their metrics 

(especially the area) could provide a bias in the distribution. In this group C1, it is found Kouoro 

1 (sub-catchment 7). The second cluster (C2) is made up of 7 subbasins, among which, Douna 

and Dioila (subbasins 1 and 4, respectively). The third Cluster (C3) represents a large mixing 

of 13 similar subbasins, such as Pankourou (subbasin 16) and Bougouni (subbasin 18). Finally, 

cluster 4 (C4) is considered as being well dissimilar to other clusters and is formed by the 

combination of 3 catchments; the well-known are Debete (25) and Madina Diassa (26).  
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Beside the optimal number of clusters suggested by the HCPC algorithm, one can look for a 

reorganization of clusters by examining the hierarchical tree illustrated on Figure 4.6. The tree 

represents the inertia loss as a function of clustering steps. The point at each two catchments 

that are merged is represented by the horizontal branch linking them, and the inertia loss 

attributed to this merging is read by projecting orthogonally the horizontal branch on the 

vertical axis. First, it can be noticed that C3 and C4 are closest to one another (the horizontal 

branch linking them is lower than the one linking C1 and C2 and could be merged into one 

cluster by increasing the variability of the system by 1.98. Then, the other merging possibility 

is between C1 and C2 but at the expense of increasing the variability by 2.94. Therefore, this 

classification into 2 clusters (C3+C4, C1+C2) could be envisaged depending on the application, 

which the classification is intended for. 

In addition, the analysis of the barplot of within-group inertia (Figure 4-6) highlights an 

important outcome: The loss of inertia (variability) or inversely the gain of homogeneity in the 

system with increasing number of clusters. It is worth noting that the loss of inertia when 

moving from one cluster to two, is equal to 3.62, from 2 clusters to 3, 2.94, and from 3 to 4, 

1.98 (can be read on the barplot). So, from a single cluster to the optimal number of 4 clusters, 

we reduced the variability by 8.54 and gained, therefore, in more system homogeneity. 
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Figure 4-6.  Hierarchical dendrogram of the Bani catchment. Each rectangle represents a cluster of 

similar catchments. The barplot (inertia gain) gives the decrease of within-group variability with 

increasing number of clusters. 

 

4.2.2. Major controlling factors of similarity  

It is important to explain the causes of similarity inside each cluster by determining attributes 

that are exerting strong control on each cluster. The description of input variables is given in 

Table 4-4. Results are also enriched by the analysis of the spatial distribution of clusters given 

in Figure 4-7.  
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Table 4-4. Description of hierachical clusters. In bold, positive v-test values indicate the variable that 

has a value greater than the overall mean, and in italic, negative v-test values refer to the variable 

that has a value smaller than the overall mean. All v-test values are significant at the probability   

p = 0.05. 

Variable v-test Mean in category Overall mean p-value 

Cluster 1 

Shape_Area  - 2.96 728.24 3623.44 0.003104 

Len1        - 3.43 56277.76 135344.70 0.000601 

Wid1        - 3.52 62.95 166.14 0.000428 

Shape_Leng  - 3.62 192137.08 465762.00 0.000296 

Dep1        - 3.78 1.69 3.24 0.000160 

Cluster 2 

AGRL         2.97 87.75 50.81 0.002936 

Lat          2.76 12.17 11.41 0.005818 

Lf           2.74 91.25 56.71 0.006213 

ElevMin     - 2.68 265.57 285.96 0.007257 

P           - 3.00 829.56 1011.18 0.002674 

Cluster 4 

Slo1         3.95 3.53 2.12 0.000080 

ElevMax      3.41 801.67 559.00 0.000654 

Elev         3.25 405.79 352.47 0.001171 

ElevMin      2.77 321.00 285.96 0.005648 

P            2.67 1279.97 1011.18 0.007662 

Lat         - 3.16 9.94 11.41 0.001557 

 

Within C1, the most significant attributes are related to catchment and reach shape (Dep1, 

Shape_Leng, Wid1, Len1 and Shape_Area, in this order) and are all characterized by below 

average values (negative v-test values). These catchments have the smallest sizes in the dataset. 

The most significant parameter in C2 is the precipitation, which is below the average. 

Catchments of C2 experience have the lowest annual precipitation and highest latitude, which 

are in line with their location in the North and the semi-arid part of the basin. In addition, they 

have the lowest minimum elevation (ElevMin), which confirms the proximity to the outlet of 

the basin. Accordingly, C2 is assimilable to the group of northerly semi-arid catchments 

situated in the valleys. With respect to the significance of AGRL and Lf attributes, C2 can 

further be defined as the group of basins dominated by agricultural lands and where ferric 

Luvisols constitute the major soil type. In the center of the study basin, C3 forms another 
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homogenous region inside which, none of the descriptors seems to have a significant impact. 

Migrating southward this time, in the headwaters of the Bani, we find catchments belonging to 

C4 where the topography exerts the strongest control on the similarity. The highest topographic 

attributes are recorded in this group (Slo1, ElevMin, Elev and ElevMax). These catchments 

receive more precipitation than the other catchments of the Bani and have the lowest latitude. 

As opposed to C2, C3 is therefore analogous to a group of southerly and humid catchments 

situated in the highlands of the Bani. Overall it seems that attributes which vary along a south-

north gradient (topography, latitude and precipitation) constitute the driving forces that control 

the physical similarity.  

Likewise, pursuing the search for more indicators of similarity, the spatial distribution of 

physically similar catchments (Figure 4-7) revealed that similar catchments mostly lie in a 

joint homogenous region, or at least in its surroundings. Therefore similar catchments are found 

to be close to each other. It appears from this result that spatial proximity plays an important 

role as an indicator of physical similarity in the study area, which is in line with the significance 

of the geographic descriptor (latitude) demonstrated here for two clusters. 
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Figure 4-7. The spatial distribution of clusters of physically similar catchments on the Bani basin 

 

4.2.3. Discussion and conclusions 

 

Discussion 

Overall, results of this study showed that the Bani can be organized into 4 major clusters of 

similar catchments based on physiographic and climatic characteristics. In addition, 

topographic variability, climatic indicators and geographical position of the sub-catchment 

were demonstrated to be the most important causes of similarity between catchments, and 

permitted to propose a kind of nomenclature of clusters: The group of northerly flat and semi-

arid catchments, and the one of southerly hilly and humid catchments. The former is further 

characterized by the dominance of cultivated lands and ferric Luvisols soil type. Globally, an 
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important gain of system homogeneity has been obtained when moving from a single group of 

catchments to the optimal number of 4 clusters. The contiguity of the defined clusters indicates 

that physical similarity somehow depends on spatial proximity of the catchments. These results 

expectedly answer the questions posed at the beginning of this work. However, due to limited 

availability of literature on this area, it is difficult to show how these results fit in with existing 

knowledge on that topic. A broader comparison can only be made about the dominant controls 

on similarity in different contexts. For instance, Kileshye Onema et al. (2012) demonstrated 

that topographic parameters (e.g., mean stream slope, minimum elevation, and maximum 

elevation) provide the major categorization of catchments of the equatorial Nile, and proposed 

the same nomenclature of flat and hilly regions. Likewise, Raux et al. (2011) showed that the 

whole Niger basin is close to the group of basins characterized by topographic parameters 

(hypsometry and mean elevation), which can be considered as the major driving forces of its 

hydro-sedimentary response. As regard to the influence of spatial proximity on physical 

similarity, many authors (Coopersmith et al., 2012; Shu and Burn, 2003) have demonstrated 

that catchment classes are geographically contiguous in many cases. The rationale of this 

concept is that climatic and landscape controls on the rainfall–runoff relationship are expected 

to vary smoothly in space and therefore, spatial proximity could entail similarity in catchment 

response (Blöschl, 2011). 

 

Conclusions and perspectives 

It is important to note that no cluster analysis can produce a definitive classification because 

the results are depending on the dataset used and other kind of subjective choices (choice of 

classification algorithm and distance metric, (Sawicz et al., 2011)). It is also acknowledged that 

the actual limitation that could arise within this study was the absence of geological descriptors, 

limiting thus our understanding of subsurface controls. However, it was demonstrated through 
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a global sensitivity analysis performed in the previous chapter (see Chapter III) that 

groundwater parameters exert a lower contribution to streamflow generation in that region. 

Therefore, the assumption that geological parameters could have a lower impact on the 

hydrological functioning of the catchment could sound acceptable. In spite of the limitations 

discussed above, these are encouraging results, showing on one hand the relevance of physical 

characteristics to give information about the spatial similarity characterizing a large tropical 

river basin, and on the other, the value of statistical analyses (such as the HCPC function) as a 

pertinent tool for exploring similarity among catchments. Concerning the assumption of 

correspondence between physical and functional similarity made in this study, Oudin et al. 

(2010) pointed out that this assumption may not always be verified. We try to verify this 

assumption in the following Chapter by applying two similarity approaches of model parameter 

transfer within and between the so-called similar catchments, and discussed the conditions 

which favour hydrological similarity. The use of other similarity concepts (such as runoff 

similarity) applied to the same catchments could also give a good platform for discussion. 
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4.3. Predicting Daily Discharge Hydrograph in Ungauged Basins Based 

on Similarity Approach  
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The objective of this study chapter was to contribute to the advance in streamflow prediction in 

ungauged catchments and uncertainty assessment resulting from regionalization of model 

parameters based on similarity concepts. The specific objectives were to:  

(1) Transfer the SWAT model parameters from gauged to ungauged catchments to simulate daily 

discharge hydrograph,  

(2) Make a comparative assessment of regionalization methods based on spatial proximity and 

physical similarity 

(3) And propagate and evaluate the prediction uncertainty related to the hydrological information 

transfer.  

Predicting streamflow hydrographs in ungauged sites is germane for a wide range of applications 

such as water resources allocations, design of hydraulic structures, flood and drought risk 

management, impact of climate and land use change studies. 

 

4.3.1. Calibration at gauged catchments 

In the preliminary, we calibrated the SWAT model at 7 gauged catchments. The calibration task 

ended up with 5 catchments where the NSE were greater than 0.5, hereinafter referred to as donor 

catchments. The two other catchments are solely target catchments. Results of the successful 

calibrations are summarized in Table 4-5.  

Overall, calibration of the hydrological model SWAT on the Bani catchment yielded good results 

for the calibration period at all the gauged catchments. Good to very good NSE and R2 values were 

obtained and were greater than 0.65. The highest performance has been recorded at the catchment 

outlet of Douna with a NSE of 0.76. Similarly, the water balance prediction component was 

accurately reproduced (PBIAIS < ± 25%). 
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Table 4-5. Performance statistics and prediction uncertainty indices of the SWAT model for the Bani 

catchment. In bold, NSE values greater than 0.5, and PBIAIS less than ±25% in absolute values. 

Period Criterion Douna Pankourou Bougouni Dioila Debete 

Calibration 

 (1983-1992) 

NSE 0.76 0.73 0.66 0.66 0.69 

R2 0.79 0.74 0.68 0.67 0.69 

PBIAS (%) - 12.2 6.08 - 15.0 6.64 - 2.50 

P-factor 0.61 0.68 0.60 0.34 0.44 

R-factor 0.59 0.41 0.57 0.55 0.58 

Validation 

 (1993-1997) 

NSE 0.85 0.77 0.37 0.57 0.45 

R2 0.87 0.83 0.57 0.8 0.54 

PBIAS (%) - 23.2 - 19.5 - 59.5 - 38.0 - 13.2 

P-factor 0.62 0.63 0.51 0.33 0.20 

R-factor 0.51 0.29 0.35 0.33 0.36 

 

The prediction uncertainty was adequate (P-factor > 0.5 and R-factor < 1) for most of the 

stations unless at Dioila and Debete where uncertainty band could not account for the 

majority of the observations. However, it can be noticed a loss of performance during the 

validation period (poor NSE at Bougouni and Debete of about 0.37 and 0.45, respectively 

and higher PBIAIS values at Bougouni and Dioila of about -59.53 and -38.00, respectively). 

These results prelude a weak regionalization performance of certain stations especially 

Bougouni where the model could not adequately reproduce flows under different 

conditions to that of calibration period (Table 4-5).  

 

4.3.2. Prediction of discharge hydrographs in ungauged basins 

Regionalization performance at ungauged catchments  

All catchments, including the donor catchments, were considered in turn as ungauged while the 

others were considered as potential donors. A total of 30 model parameters transfers have, 

therefore, been executed. Seven of them (that represent 23% of the total regionalization) have 
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yielded good performances in terms of both NSE and PBIAIS, and have been found on four 

catchments over seven. Results of the model parameters transfers are summarized in Table 4-6. 

NSE values vary between 0.52 and 0.83, with a median of 0.60. Moreover, good PBIAIS values 

have been obtained showing accurate prediction of the water balance component, and range 

between 5.67 and 25% in absolute values. It is important to underline the somewhat lower 

performance of one additional simulation obtained at Pankourou (donor = Debete, NSE = 0.56, 

PBIAIS = 41.75%), but which will be considered hereinafter at a successful regionalization (despite 

the higher errors in water balance prediction). Overall, good predictions have been obtained and 

the best performance has been achieved at the whole catchment outlet of Douna (NSE = 0.83 and 

PBIAIS = 5.67%) with the use of the parameter set determined at Pankourou.  

Table 4-6. Performance of the SWAT model parameters transfer inside the Bani catchment. In bold, 

above-threshold statistics of a satisfactory regionalization, while in italic below-threshold statistics. 

Donor 

Target 
Douna Dioila Pankourou Debete 

NSE PBIAIS NSE PBIAIS NSE PBIAIS NSE PBIAIS 

Douna × × 0.73 - 6.93 0.83 5.67 - 0.58 111.1 

Dioila 0.56 - 25.0 × × 0.60 - 17.7 - 0.30 85.8 

Pankourou 0.68 - 7.95 0.49 - 39.1 × × 0.56 41.8 

Debete 0.52 - 6.36 0.11 - 70.4 0.59 19.4 × × 

 

Dependency of regionalization performance at ungauged catchment on calibration performance 

at gauged catchment. 

It should be noted that in the present study we used a process-based method, i.e., a rainfall-runoff 

model, to predict streamflow in ungauged basins. Therefore, the performance of a regionalization 

method firstly depends on the quality of the calibration task. If we compare the performance 

obtained at ungauged catchments (Table 4-6) to the performance of the calibration at gauged 

catchments (Table 4-5), it can be derived that in general, a good regionalization was obtained by 
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applying parameter sets that already showed a certain ability to perform on the validation period 

at gauged sites. For instance, a good performance has been achieved for both calibration and 

validation periods at Douna, Pankourou and Dioila stream gauges, and the same stream gauges 

yielded good regionalization results. None of the transfers from Bougouni gave a satisfactory 

simulation; little performance has been obtained with the parameters of Debete. It is important to 

recall here that the model has already shown a weak robustness in performing under a different 

time period at those catchments.  

 

Assessment of the prediction uncertainty at ungauged catchments 

The total uncertainty in ungauged catchments results from the cumulative effect of model 

calibration uncertainty (related to input data, model structural errors and model parameters 

identification) and model parameters transfer. As such, it can be awaited an increase of uncertainty 

from the donor (where the rainfall-runoff model has been calibrated) to the target catchment (where 

the model parameters have been transferred). The resulting uncertainty statistics are presented on 

Figure 4-8. 
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Figure 4-8. Prediction uncertainty band of model parameters transfer at ungauged catchments (in gray) 

represented by R-factor values. In blue, initial uncertainty band at the donor catchment. 

 

R-factor values became greater as one moves from gauged to ungauged catchment (except for the 

case of Dioila) representing therefore larger uncertainty band related to model parameters transfer. 

As an example, the R-factor values increased from 0.51 at the donor Douna, to 0.75 and 0.88 

successively at Pankourou and Debete. The largest uncertainty band has been recorded at Douna 

and Dioila (R-factor = 1.15). However, the relative tendency of the P-factor is not straightforward; 

depending on the case, the regionalization can be accompanied by a decrease or an increase of the 

percentage of observed data bracketed by the 95PPU. But in general, more of 50% of the observed 

discharges were included in the uncertainty band unless again the transfer from Dioila. In fact, few 

behavioral simulations (9) have been obtained by the calibration task, and a small P-factor (Table 

4-5). The choice of a high threshold value (0.5) to separate behavioral to non-behavioral 

simulations, can have the impact of reducing the prediction uncertainty at that station.  
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To complete the assessment, graphical analysis of Figure 4-9 revealed the presence of larger 

uncertainty band around high flows, especially exacerbated during the year 1994, which has been 

a very humid year due to the exceeding precipitations recorded all over the study area. In addition, 

one can note the displacement of that uncertainty band aside of the predicted and observed 

hydrographs during the last year (1997), which could be an artifact of the model. Overall, it can 

be deduced from what preceded that there is an increase of the prediction uncertainty from gauged 

to ungauged catchments.  

 

(a) 

(b) 
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(c) 

(d) 

(e) 

(f) 
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Figure 4-9.  Measured and predicted discharge on the target catchments (Douna (a)-(b), Debete (c)-(d), 

Dioila (e)-(f) and Pankourou (g)-(h)) using different donor catchments. Note that the title of each 

subplot (for example Douna (Dioila) in subplot (a)) means Target (Donor) catchment, respectively.   

 

Is there any physiographic or climatic pattern of hydrograph prediction? 

Figure 4-10 shows the spatial location of the ungauged sites where regionalization yielded at least 

one satisfactory result with respect to the evaluation criteria defined in section 3.2.8. Most of the 

successful regionalization simulations are located in the half-north of the study area, which 

actually spans over semi-arid (aridity index between 0.2 and 0.5) and dry sub-humid (aridity index 

between 0.5 and 0.65) zones. Overall the total catchments with satisfactory regionalizations, 3 over 

4 are located in that region and recorded the highest performances which range between 0.56 and 

0.83. Only one successful catchment is located in the humid region (aridity index > 0.65) with 

lower performance between 0.52 and 0.59 (Figure 4-10). Consequently, hydrograph prediction 

(g) 

(h) 
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performance appears to be higher in semi-arid than in humid region although prediction 

uncertainty tends to increase more in semi-arid catchments.  

Moreover, there is a tendency that the regionalization performs better among hydrologically 

connected catchments without consideration of any physioclimatic region, as describe by the 

performances obtained between Douna and Dioila on one hand, Douna, Pankourou and Debete on 

the other. In fact, these stations control nested catchments which flows successively contribute to 

the flows of the one situated downstream. But this characteristic was not found on the other river 

(Baoule River) connecting Madina Diassa, and Bougouni where the regionalization did not 

succeed at all.  

 

Definition of hydrological similarity  

In this case, we evaluated the best similarity method as the one which best describes hydrological 

similarity between gauged and ungauged catchments. To assess that hydrological similarity, we 

compared at each target catchment the performance obtained by calibration, and the performance 

obtained by using the optimized parameters of the donor catchments. Results are presented in 

Table 4-7. 

Table 4-7. Ratio between regionalization performance and calibration performance at target catchment. 

Target catchment Douna Dioila Pankourou Debete 

Douna - 96% 109% - 

Dioila 85% - 91% - 

Pankourou 93% 68% - 77% 

Debete 75%  - 86%  - 
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Figure 4-10. Spatial pattern of the discharge hydrograph regionalization. The number of symbols inside 

each catchment represents the number of simulation with NSE greater than 0.5. The aridity index was 

calculated on the period 1983-1998. 

 

All regionalization models reached efficiency greater than 0.75% of the efficiency obtained by 

calibration at the target catchment. Pankourou is the outlet whose parameters produced the highest 

performance at the other target catchments (109% at Douna, 91% at Dioila and 86% and Debete). 

The performance achieved at Douna is even greater than the performance achieved by calibration 

(ratio = 109%). Therefore, taken two by two, there exist a very good hydrological similarity 
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between Douna and Dioila, Douna and Pankourou, Douna and Debete, Dioila and Pankourou, and 

Pankourou and Debete. However, only Douna and Dioila, Douna and Pankourou, and Pankourou 

and Debete, can be considered as mutually hydrologically similar because parameters set of one is 

suitable for the other, and vice versa.  

If we try to relate this hydrological similarity with the regionalization approaches utilized herein, 

results revealed that the hydrologically similar catchments are two by two nested an can be treated 

as the immediate upstream and downstream neighbors. Therefore, there exists a tendency of spatial 

proximity to best describe, even though partially, the hydrological similarity between catchments. 

  

4.3.3. Discussion and conclusions 

Does hydrograph prediction depend on climate?  

With the aim of predicting discharge hydrographs at ungauged catchments on the Bani basin, we 

calibrated the SWAT model on many gauged catchments and then transfer model parameters to 

ungauged sites based on similarity approaches. Results showed good predictability of the 

regionalization in dry sub-humid to semi-arid catchments as depicted by highest NSE ranging 

between 0.56 and 0.83, while it decreases to 0.52 and 0.59 in more humid catchments. However, 

prediction uncertainty was found to increase with aridity. Many authors have reported in the broad 

literature, however, a decreasing performance with aridity (Parajka et al., 2013; Patil and Stieglitz, 

2012; Salinas et al., 2013) and have attributed this finding to the presence of more heterogeneities 

in hydrological variables leading to non-linear rainfall-runoff relationships in arid zones. In our 

case the weakness of the regionalization in humid catchments may be explained by a non-

stationarity of hydrological behavior on the simulation period potentially due to changes in climate 
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and land use characteristics. The calibration of the model has already given inadequate results in 

the temporal validation. Therefore, in addition to the difference of hydrological behavior between 

catchments (spatial transposability), there should be a temporal disruption in rainfall-runoff 

relationship between calibration and validation periods. Abrate et al.(2013) showed for instance 

the appearance of a new break in the hydrological series of the Niger River during the year 1994/95 

(this year falls inside our validation period) with a return to wetter conditions. However, one could 

expect the impact of the hydrological break to be the same or uniformly distributed on the basin.  But we 

rather think that the consequences of that new regime on catchments rainfall-runoff relationship, 

should have been different in humid than in arid catchments. One can discuss the limited length of 

the herein calibration-validation period (15 years) to derive any statistically significant tendency, 

but Sawicz et al. (2014) were able to detect the presence of non-stationarity of hydrological 

behavior between catchments by comparing their hydrological signatures between 10-year periods 

and concluded that the change in catchment functioning is mainly attributed to change in 

precipitation characteristics. In addition, the land use map utilized herein for model setup has been 

built with data of a 12-month period 1992-93 and therefore represents the land cover pattern of 

that period. We hypothesized that this land cover map could not be suitable to capture the temporal 

and spatial variability of that attribute in the study catchments.  

Is there any physiographic pattern of regionalization efficiency? 

We obtained the highest regionalization efficiencies at the whole catchment outlet. This result can 

be explained by the effect of catchment size on the prediction performance. Parajka et al. (2013) 

have reported in their review on runoff-hydrograph prediction studies, an increasing prediction 

performance with increasing catchment size. The catchment’s size effect in hydrological models 

in general creates a kind of compensation between positive and negative errors of processes at a 
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larger scale (Cao et al., 2006; Wellen et al., 2015) leading to an overconfidence in the model 

performance with increasing area. As a reminder, the same catchment (i.e., Douna) has yielded the 

highest calibration performance as well (see Chapter III). Another aspect that can be regarded the 

hydrological dependency of flows (nestedness) between donor and target catchments. Douna 

receives flows from all the internal outlets involved in the regionalization; this could be in favor 

to a successful transfer of parameters between the upstream and the downstream of the basin.  

The efficiency reached by using parameters borrowed from Pankourou was surprisingly even 

better than the efficiency reached by calibration. This raises an important issue of whether 

regionalization can outperform calibration at a given location? First, , it should be noted that in 

spite of the high regionalization performance obtained at Douna in terms of NSE and PBIAIS, the 

prediction is however accompanied with uncertainty higher than the one obtained by calibration.  

Therefore, the result should be interpreted with caution. Second, we could not attribute the 

performance reached by calibration at Douna to a local optimum which is not possible with GLUE 

because this method was constructed instead to avoid the problem of model parameters non-uniqueness. 

In conclusion, we could not explain with the data used in this study why regionalization outperformed 

calibration at Douna.  

Which similarity method performs best? 

The results support a good advocacy of spatial proximity predominance over the study area. In 

fact, a good hydrological similarity has been found principally between nested (situated along the 

same river branch) catchments, such as Douna and Dioila on one branch, Douna, Pankourou and 

Debete on another, and decreases with increasing distance. The rationale behind this influence is 

that there exists a hydrological connection between nested catchment flows so that one can assume 

their parameters to be similar. Merz and Blöschl (2004) used this kind of spatial proximity 
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approach and transferred the average parameters of immediate upstream and downstream 

neighbors. They concluded that this method performs best among other regionalization techniques. 

More widely, spatial proximity have been proved in many review studies (Blöschl et al., 2013; 

Parajka et al., 2013; Salinas et al., 2013; Viglione et al., 2013) to be the best regionalization 

approach. However, our result is conditioned by the limited data availability characterizing our 

study, and also the dependency between physical similarity and spatial proximity as discussed in 

Chapter III. The rationale of this relation is that catchment structure and climate are noted to vary 

smoothly in space. Consequently, physioclimatic regions frequently appear to be contiguous 

making it difficult sometimes to differentiate between the influence of physical similarity and 

spatial proximity, which we called the combined method as described between Douna and 

Pankourou lying in the same physiographic region and being geographically close. 

Estimation of hydrological similarity between catchments 

Last, but not the least, we have demonstrated that the Pankourou catchment was the most 

hydrologically similar to the other catchments involved in the regionalization. At all the target 

catchments, the efficiency reached by applying parameters from Pankourou not only exceeded the 

others efficiencies, but is also greater than 80% of the efficiency reached by calibration at the same 

catchments. Pankourou can therefore be considered as the paragon of the Bani catchment, and 

neither spatial proximity nor physical similarity can fully explain this hydrological behaviour. We 

suggest that further work been carried out on such catchment, and on the similarity relationships 

it has in common with other catchments to advance the understanding of hydrological similarity.  
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Conclusions 

In this study, the performance of the similarity approach for discharge hydrograph 

prediction in ungauged catchments was evaluated on the Bani basin. We utilized a process-

based method, i.e., a regionalization of model parameters. For this purpose, we calibrated 

the SWAT model at 5 gauged catchments (termed as donor catchments) on a daily basis 

for the period 1983-1992 and validated it on the period 1993-1997, and considered 2 

additional gauged catchments where the model has not been calibrated. For the 

regionalization purpose, each catchment (including the donor catchments) was considered 

in turn as ungauged, while the others were considered as potential donor. Then the 

optimized model parameter set was entirely transposed from the gauged to the ungauged 

catchment to achieve discharge hydrograph. Due to limited availability of gauged 

catchment, all donors were considered for each ungauged catchments without any 

consideration of spatial proximity or physical similarity. The resulting simulations were 

thereafter discussed according to both similarity methods (spatial proximity and physical 

similarity).  

Final results showed a good SWAT model performance to predict daily discharge by 

calibration at gauged catchments. However, poor performance has been recorded in the 

validation period at catchments situated in humid region. In addition, the study showed 

higher regionalization performance and prediction uncertainty in arid zone, where spatial 

proximity seem to explain, in most cases, hydrological similarity between catchments. 

Overall, this study shows evidence on the hydrological similarity inside a group of 4 

catchments spanning over different environmental regions. The exemplar of this group is 
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the catchment controlled by the Pankourou outlet whose parameters seem to represent all 

the other catchments.  

However, it is worth noting that the major limitations that arose within this study is mainly 

the limited climate data availability (rain gauge density, time series length) and the weak 

density of the discharge gauges which can impact the model parameter identification and 

the comparative assessment of regionalization methods, respectively. In addition, the 

success of physical similarity can be masked by many subjective choices such as catchment 

descriptors, classification algorithm, and especially the absence of geological and 

subsurface descriptors limiting therefore the impact of groundwater flows on the 

classification result. These issues emphasized the challenging task of prediction in 

ungauged basins in developing countries where even the few existing gauged catchments 

are “ungauged” in a certain extent, in terms of geological, soil, socioeconomic information, 

to cite few.  

In spite of these limitations, this study represents a first step towards an advance in 

hydrological processes understanding for better prediction in ungauged catchments, 

especially where it is more needed, i.e. in developing countries. To our knowledge, this is 

the first ever study on prediction in ungauged catchments on the Bani river, using a process-

based method for a complete hydrograph simulation. Results of this study can be used in 

many water resources management’s strategies. However, the backbone of any 

management is the data availability. Therefore, the developed regionalization model can 

be used to generate data where it is not measured. From filling gaps in discharge time 

series, to data forecast, from daily discharge to annual discharge volume, many applications 

can be found according to the objective it is intended for: water allocation to irrigation, 
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industry, hydraulic structure design, ecological studies, and climate and land use change 

impact studies, among others. Due to the limited accuracy of the model to simulate high 

flows, we recommend that the model should be improved before being used in any flood 

forecast.  
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Chapter V 
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5. Conclusions and Perspectives 

 

5.1. Conclusions 

This thesis is devoted to predicting streamflow hydrographs in ungauged basins. Firstly, we 

calibrated the SWAT model on the Bani catchment on a daily time interval and identified the most 

sensitive model parameters that will subsequently be used in a regionalization scheme. Secondly, 

all the subcatchments generated at the watershed delineation pre-processing were grouped into 

clusters of similar physiographic and climatic characteristics by the means of a multivariate 

statistical analysis. Finally, the optimized model parameters were transferred between catchments 

based on physical similarity and spatial proximity approaches to achieve daily streamflow 

hydrograph simulations which will be compared to their observed counterparts.  

Final results demonstrated a good SWAT model performance to predict daily as well as monthly 

discharge at catchment and subcatchment levels with adequate prediction uncertainty. From the 

calibration task, 12 model parameters were clearly identified as the ones that best represent the 

hydrological functioning of the catchment, and the most sensitive of them are related to surface 

runoff process. The underlying limited data conditions seem to favour a good hydrological 

modeling of the study area. The study has also come out with a physical classification of 

subcatchments into 3 major groups: a group of northerly flat and semi-arid catchments, another 

group of southerly hilly and humid catchments, and a third group located in the center of the study 

basin, inside which, none of the descriptors seems to exert a strong control on the similarity. This 

similarity is mainly interpreted by the topography, the precipitation and the latitude, i.e. the 

geographical position, of the catchments. Then, a comparative performance assessment of the 

regionalization methods based on similarity is provided. First, it was highlighted the existence of 
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a climate and scale patterns of the regionalization efficiency. There are noted increasing 

performance and larger prediction uncertainty with aridity and catchment area. In addition, spatial 

proximity was found to perform best. However, with the data used in this specific case study, we 

could not shed light on the assumption of correspondence between physical and hydrological 

similarity.  

We used a physically based model to predict discharge at gauged catchments and evaluated the 

associated prediction uncertainty, therefore providing a range of possible discharge estimations on 

a specific period of time on which decisions can be built. But the model has the advantage that it 

can accommodate to changes in time, climate and environment. Because of that, it can be used for 

water resources forecast and impact studies, by updating input data. This knowledge will help in 

the evaluation of current and future hydrological impacts of climate and land use changes, and the 

development of appropriate strategies of adaptation to climate change.  

The knowledge of water resources availability in small ungauged catchments can also contribute 

to the development of irrigation. In a context where rain-fed agriculture remains the most 

threatened economic sector by climate change and is mainly subsistence-oriented, irrigation has 

become an alternative solution in West Africa facing frequently hydro-meteorological droughts. 

The development of irrigation will help limiting the exposure of the rural population to food 

insecurity.   

Beside the practical implications, the outcomes of this thesis are also very useful for the science 

by improving the understanding of local hydrological processes. From the predominance of 

surface runoff in streamflow generation and the limit of the so-defined physical similarity to 

explain hydrological similarity between catchments, possible research ways towards new 

definitions of hydrological processes are outlined.  
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Many difficulties and limitations arose at different steps of the regionalization process. Limited 

hydro-meteorological data, with many gaps, inconsistencies and varying lengths, and coarse 

information on soil and land use for Africa, can successively impact the prediction performance 

and uncertainty of the calibrated and regionalized hydrological models.  

It is also acknowledged that the actual limitation that could arise within the classification was the 

absence of geological descriptors, limiting thus our understanding of groundwater controls. 

Moreover, this classification is very sensitive to the dataset used, the classification algorithm, the 

distance metric, making it difficult to extrapolate beyond the catchment of interest.  

 

5.2. Perspectives and recommendations 

Data constitute the backbone of any water resources management. Therefore, to improve model 

accuracy and reduce prediction uncertainties, additional data have to be used. This suggests that: 

 We need to densify the hydro-meteorological measuring network to collect information at 

the maximum amount of points possible. And more, not only data quantity is required, but 

also data of good quality which are measured following accepted guidelines and are easily 

traceable to their sources in order to facilitate quality control procedures.  

 Exploiting new measurement technologies such as remote sensing can help keep pace with 

the evolving water issues.  

 Spatial data are also concerned. It is important to note that the use of globally available 

data with very coarse resolution is not always suitable especially for small catchments. 

The use of the new land use map developed by AGRHYMET on West Africa could be a 

promising tool for enhanced hydrological modeling in that region. 



Page 100 
 

While we know that physical similarity does not necessarily entail hydrological similarity between 

catchments involved in this study, we do not know which elements do contribute to that behaviour 

and how. We need further investigations on functional characteristics, e.g. runoff signatures, and 

the way they affect catchment rainfall-runoff response. This, in turn, will enhance the development 

of more suitable classification and regionalization methods.  
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