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ARTICLE INFO ABSTRACT

This paper presents the first attempt to include soil moisture information from remote sensing in the tools
available to desert locust managers. The soil moisture requirements were first assessed with the users. The main
objectives of this paper are: i) to describe and validate the algorithms used to produce a soil moisture dataset at
1 km resolution relevant to desert locust management based on DisPATCh methodology applied to SMOS and ii)
the development of an innovative approach to derive high-resolution (100 m) soil moisture products from
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Disaggregation Sentinel-1 in synergy with SMOS data. For the purpose of soil moisture validation, 4 soil moisture stations where
Sentinel-1 installed in desert areas (one in each user country). The soil moisture 1 km product was thoroughly validated and

its accuracy is amongst the best available soil moisture products. Current comparison with in-situ soil moisture
stations shows good values of correlation (R > 0.7) and low RMSE (below 0.04 m® m~3). The low number of
acquisitions on wet dates has limited the development of the soil moisture 100 m product over the Users Areas.
The Soil Moisture product at 1 km will be integrated into the national and global Desert Locust early warning
systems in national locust centres and at DLIS-FAO, respectively.

Plagues of Desert locusts, Schistocerca gregaria (Forskél 1775), have
threatened agricultural production in Africa, the Middle East, and Asia

1. Introduction

Desert locusts are a type of grasshopper found primarily in the
Sahara, across the Arabian Peninsula and into India. The insect is
usually harmless, but when they swarm they can migrate across long
distances and cause widespread crop damage. In 2003-2005, eight
million people in over 20 countries suffered from ravages caused by
swarms of Desert locusts, with an estimated 80-100% of crops lost in
afflicted regions, mostly sub-Saharan Africa (Brader et al., 2006).
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for centuries. The livelihood of at least one-tenth of the world's human
population can be affected by swarms of this insect (Latchininsky et al.,
2016).

The Desert locust is able to change from a solitarious phase when
population density is low to a gregarious phase when population den-
sity is high (Uvarov, 1921; Pener and Simpson, 2009). The major driver
of this phase transformation is population growth and concentration in
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the vegetated part of desert areas. Sporadic and localized rains cause
vegetation growth and allow these population to increase through egg
deposition in wet sandy soil and good survival in the developing ve-
getation. The new vegetation provides food for the newly hatched lo-
custs and shelter as they develop into winged adults.

Desert locust preventative management aims to prevent crop da-
mage by controlling populations before they can reach high densities,
go through phase change and form mass migrating swarms (Brader
et al., 2006; Magor et al., 2008). The areas of potential gregarization for
desert locust are large (estimated to at least 0.25 million km? Sword
et al., 2010) and need to be physically assessed by survey teams for
efficient preventative management. To achieve early detection, survey
teams from each country must visit potential breeding areas to assess
the condition of habitat and the state of any desert locust population.
The potential breeding habitats cover enormous areas that are often
remote and difficult of access. An on-going challenge is to be able to
guide where surveys should occur depending on local meteorological
and vegetation conditions.

To guide survey teams precisely to those areas with highest prob-
ability for desert locust breeding, satellite imagery represents an in-
valuable tool because it has the potential to provide an indication of the
evolution of vegetation cover and soil moisture, which are the two main
parameters for describing desert locust habitat. During the 1980s, the
Desert Locust Information Service (DLIS) from FAO started to use earth
observation techniques to assess environmental conditions (Hielkema
et al., 1990; Cressman and Hodson et al., 2009). Meteosat cloud ima-
gery was the first satellite imagery used by FAO-DLIS to estimate
rainfall areas. Few years later the NOAA/AVHRR 7km resolution
Normalised Difference Vegetation Index (NDVI) gave information on
vegetation. Currently, FAO-DLIS advises the countries to use greenness
maps to verify the potential habitats of desert locust (Pekel et al., 2011;
Waldner et al., 2015; Renier et al., 2015). These greenness maps are
produced based on MODIS imagery to show the changes of vegetation
providing the greening of vegetation and its disappearance at a pixel
resolution of 250 m. The FAO also promotes the use of daily, decadal,
and monthly geo-referenced satellite-derived rainfall estimates on a
0.25° x 0.25° latitude/longitude grid (Dinku et al., 2010; Cressman,
2013).

Using vegetation status alone can lead desert locust managers to a
temporal problem to decide when to send survey teams. Indeed, NDVI
or derived vegetation greenness maps might arrive to the managers at
the same time than locust populations actually develop. To be able to
take earlier the decision to send survey teams, one solution is to have
timely information about soil moisture, which precedes vegetation
growth. Soil moisture (SM) is a very good indicator of reproduction
potential over an area, since desert locust females choose and need
moist areas to lay their eggs (Hunter-Jones, 1964; Pener and Simpson,
2009). In comparison to rainfall, SM allows to focus on areas where
reproduction might happen. Second, the rain falling on mountain areas
can spread over several hundreds of kilometres, and hence favours
vegetation development and reproduction of desert locust in areas far
away from the rainfall event (Lazar et al., 2016). On the long run, SM
could also be incorporated in decision support systems based on sta-
tistical models coupling satellite imagery to field reality.

The Soil Moisture for dEsert Locust earLy Survey (SMELLS) project
(http://smells.isardsat.com/) has been the first attempt to include SM
information from remote sensing in the tools available to desert locust
managers. The project first step was to assess the users requirements for
the soil moisture products. The panel of users primarily constituted for
SMELLS was of 4 affected countries by desert locust in western and
northern Africa (Algerian INPV, Malian CNCLP, Mauritanian CNLA and
Moroccan CNLAA) and one international institution dealing with the
transmission of Desert locust information (FAO-DLIS). The geographical
and temporal requirements of these users are therefore different. A
consensus appeared to have the SM produced per decades (10 days).
This can be justified by the fact that 10 days, or more precisely the
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decades of the month (10 first days, 10 following days, 8-11 left-over
days), is the temporal unit of desert locust management in terms of
information transfer and reports when an outbreak or upsurge is de-
veloping. Also, many other EO products used in Desert locust early
warning system and preventive management are now produced fol-
lowing this decadal system (e.g. the IRI decadal rain estimates). The
accepted latency is between 3 and 10 days. The spatial resolution re-
quired is varying among users, but always equal or below 300 m. This
corresponds to the need of the identification of small spatial structures
corresponding to favourable biotopes, such as wadis where water ac-
cumulate and will become perfect habitats for Desert locust reproduc-
tion.

Currently, the soil moisture data sets available at global scale have a
spatial resolution much coarser than that required by locust managers.
Specifically, the soil moisture retrieved from passive microwave ob-
servations such as Advanced Microwave Scanning Radiometer-EOS
(AMSR-E) (Njoku et al., 2003), Soil Moisture and Ocean Salinity
(SMOS) (Kerr et al., 2001) or Soil Moisture Active and Passive (SMAP)
(Entekhabi et al., 2010) have a spatial resolution of about 40 km.

Hydrological, agricultural and water management applications have
been also requesting soil moisture datasets at a higher resolution for a
long time now. In this context, downscaling methodologies have been
developed to improve the spatial resolution of readily available passive
microwave-derived soil moisture data. In particular, the DisPATCh
disaggregation scheme estimates the soil moisture variability at high
resolution within a low resolution pixel by relying on a self-calibrated
evaporation model (Merlin et al., 2013). The DisPATCh algorithm has
been implemented and validated in several climatic regions such as
Catalonia, Spain (Merlin et al., 2012, 2013), Central Morocco (Merlin
et al., 2015), South-Eastern Australia (Malbéteau et al., 2016) and two
watersheds in the USA (Molero et al., 2016). However, it has never been
tested in the arid regions where the desert locust is likely to reproduce.

In the microwave domain, active sensors (radars) achieve a spatial
resolution much finer than that of radiometers. Sentinel-1 A and B
(Torres et al., 2012) are providing C-band SAR (Synthetic Aperture
Radar) data at a spatial resolution of about 20 m. Although backscatter
data have potential to monitor SM (Balenzano et al., 2013), there is
currently no operational soil moisture product at such fine resolution.
This is notably due to the difficulty to model in time and over extended
areas the impact of vegetation cover/structure and surface roughness
on the backscatter signal (Satalino et al., 2014), and thus the need for
site-specific calibration (Zribi et al., 2011).

One widely used approach when a long time series of backscatter
exist over one site is to set the lowest and highest values of the observed
backscatter to the lowest and highest values of soil moisture. The soil
moisture data are then provided in terms of degree of saturation, that is,
in relative units ranging between 0 (dry) and 100 (saturated). This is for
example the approach used in H-SAF Soil Moisture product from ASCAT
(Wagner et al., 1999). The main drawbacks of this approach are that
soil moisture is provided as a relative quantity (not measurable) and
that outliers may disrupt relation. Another widely used approach, when
the time series is not long enough and/or in-situ soil moisture data are
available, is to use these in-situ measurements to calibrate a linear re-
lationship between soil moisture and backscatter (Zribi et al., 2011).
The advantage of this approach compared with the previous one is that
it provides absolute soil moisture values (measurable). Its main draw-
back is that it is completely site dependant since it depends on the in-
situ soil moisture measurements. Here we propose a methodology based
on the second approach. What is innovative in our approach is that we
will be relying in passive microwave disaggregated soil moisture in-
stead of in-situ measurements to calibrate those widely validated
methods to derive soil moisture from SAR measurements. In a recent
analysis from Louvet et al., 2015, different soil moisture products at low
resolution (around 40 km) where evaluated over West Africa (Louvet
et al.,, 2015). The products analysed were SMOS, AMSR-E NSIDC,
AMSR-E VUA and ASCAT. In Louvet et al., 2015 best performances
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MOROCCO

Fam el Hisn, province of Guelmim-Es Semara
(Lat N 29°00°58.8", Lon W 8°5029.9")
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ALGERIA

Abalessa, province of Tamanraset
(Lat N 22°47'33.0”, Lon E 4°14'41.0")

MAURITANIA

42km South-east of Akjoujt, province of Adrar
(Lat N 19°38°07.4”, Lon W 14°0203.3")

MALI

Yélimané, province of Kayes
(Lat N 15°07°11.8", Lon W 10°33’14.8")

Fig. 1. SMELLS Soil Moisture Stations.

were for SMOS with a correlation coefficient (R) of 0.7 and a root mean
square error (RMSE) of 0.032m® m ™3, Using SMOS disaggregated soil
moisture as ‘ground truth’ will allow at the same time to i) obtain ab-
solute soil moisture values (measurable) and ii) be site independent
since our disaggregation scheme is self-calibrated (i.e. no need for an-
cillary information).

In this context, the main objectives of this paper are: i) to describe
and validate the algorithms used to produce a soil moisture dataset at
1km resolution relevant to desert locust management based on
DisPATCh methodology applied to SMOS and ii) the development of an
innovative approach to derive high (100 m) resolution soil moisture
products from Sentinel-1 (S1) in synergy with SMOS data.

2. Datasets

The development of SM products and their analysis has been carried
out in 4 countries affected by desert locust in western and northern
Africa: Algeria, Mali, Mauritania and Morocco that participate in the
SMELLS project. The time period used for analysis is from January 2010
till December 2016.

2.1. Soil moisture from remote sensing data

ESA's SMOS mission has been designed to observe SM over the
Earth's landmasses and salinity over the oceans. Launched on 2
November 2009, SMOS is the second Earth Explorer Opportunity mis-
sion developed as part of ESA's Living Planet Programme.

An important aspect of this mission is to demonstrate a new mea-
suring technique in the field of Earth observation. SMOS carries the
first-ever, polar-orbiting, space-borne, 2D interferometric radiometer
operating at the lowest protected band of microwaves. Its Microwave
Imaging Radiometer using Aperture Synthesis (MIRAS) measures mi-
crowave radiation around the frequency of 1.4 GHz (L-band).

In SMOS L2 products, multiangular observations of brightness
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temperature (TB) are used to retrieve simultaneously SM and vegeta-
tion optical depth at nadir (zy4p) using a standard iterative minimiza-
tion approach of a cost function. The main component of the cost
function is given by the sum of the squared weighted differences be-
tween measured and modelled TB data, for a variety of incidence an-
gles. The algorithm finds the best set of the parameters, e.g., SM and
vegetation characteristics, which drive the direct TB model and mini-
mizes the cost function (Kerr et al., 2012).

2.2. MODIS

MODIS (Moderate Resolution Imaging Spectroradiometer) is a key
instrument aboard the Terra and Aqua satellites. Terra's orbit around
the Earth is timed so that it passes from north to south across the
equator in the morning, while Aqua passes south to north over the
equator in the afternoon. Terra MODIS and Aqua MODIS are viewing
the entire Earth's surface every 1-2 days, acquiring data in 36 spectral
bands.

Our algorithms need Land Surface Temperature (LST) and NDVI, so
we rely on two different MODIS L3 products:

e MODIS Aqua and Terra Land Surface Temperature and Emissivity
Daily L3 Global 1 km Grid SIN.
e MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km Grid SIN.

2.3. Sentinel-1

The Sentinel-1 (S1) mission comprises a constellation of two polar-
orbiting satellites, performing C-band Synthetic Aperture Radar (SAR)
imaging. S1A was launched on 3 April 2014 and S1B was launched on
25 April 2016.

The C-band SAR on board S1 is measuring at a central frequency of
5.405 GHz at multi-polarisation and with variable swath/resolution. S1
has four modes, but over land it is operated mainly in Interferometric
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Wide Swath (IWS) mode which images the Earth at 5x20 m spatial
resolution at VV and VH polarisation.

2.4. In-situ soil moisture

During the first quarter of 2016, a SM station was installed in each
of the participating countries within the Users Areas of Interest. The
basic set up consists of 2 surface sensors at 5 cm depth and 1 sensor at
15 cm depth. SM sensors are Decagon EC-5 and default calibration is
used. The stations are located in desert areas of remote access where
vegetation is extremely scarce (see Fig. 1 ). The exact location, soil
texture values from the Ecoclimap (Masson et al., 2003) and Soil Grid
database (soilgrids.org) and used dataset is detailed below:

e Fam el Hisn Station (Lat N 29°00'58.8”, Lon W 8°50'29.9”), located
in the province of Tata, Morocco installed in March 24th, 2016. The
sand (S) percentage is estimated to be between 39% and 57% and
clay (C) between 22% and 24% according to ecoclimap and soilgrids
respectively. The dataset extends from March 24th, 2016 until
October 27th, 2017

Abalessa Station (Lat N 22°47'33.0”, Lon E 4°14'41.0”), province of
Tamanraset, Algeria installed April 19th, 2016. The S percentage is
between 44% and 55% and C between 22% and 32%. The dataset
extends from April 19th, 2016 until December 25th, 2016
Yélimané Station (Lat N 15°07'11.8”, Lon W 10°33'14.8”), province
of Kayes, Mali installed May 13th, 2016. The S percentage is be-
tween 58% and 64% and C between 21% and 30%. The dataset
extends from May 13th, 2016 until October 21th, 2017

Akjoujt Station (Lat N 19°38'07.4”, Lon W 14°02'03.3”), province of
Adrar, Mauritanie installed May 20th, 2016. The S percentage is
between 68% and 80% and C between 12% and 16%. The dataset
extends from May 20th, 2016 until August 13th, 2017

Because of the relatively short-time SM dataset from the SMELLS
stations, the long-term measurements of the in-situ soil moisture data
from the AMMA-CATCH sites in Mali and Niger have been also used for
validation purposes.

The AMMA-CATCH Mali site is located in the semi-arid Sahelian
area. Climatic conditions are governed by the West African Monsoon
with a long dry season and a shorter rainy season from July to
September. The AMMA-CATCH Mali site is characterised by a mean
annual rainfall of 370 mm per year (over 1920-2005). We have used
data from the Agoufou site (Lat N 15°20'24”, Lon W 1°28'26.4”) that
consists of 2 sensors at 5cm depth. The texture of the sites is S per-
centage 95% and C percentage 1% (De Rosnay et al., 2009). Sensors
provide soil moisture at the hourly time step, for the period 2010-2011.

The AMMA-CATCH Niger site, consists of 3 sampling plots each
with 2 sensors at 5cm depth. The texture of the sites is S percentage
77% and C percentage 8% (Pellarin et al., 2009). The exact location is
given below:

o Wankama site (Lat N 13°38'45.5”, Lon E 2°37'55.2”)
e Banizoumbou site (Lat N 13°31'28.92”, Lon E 2°39'36”)
e Tondikiboro site (Lat N 13°32'52”, Lon E 2°41'45.6”)

AMMA-CATCH Niger sensors provide soil moisture at the hourly time
step, for the period 2010-2014.

Both AMMA CATCH sites Soil Moisture sensors are CS-616 and
default calibration is used.
3. SMELLS products
3.1. SMELLS 1 km product

In the framework of the SMELLS project, the DisPATCh algorithm to
disaggregate SMOS SM was implemented in West Africa (40-10° N,
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20°W - 20° E). DisPATCh provides 1km resolution SM data from
coarse-scale microwave-derived SM. In DisPATCh, the soil evaporation
from the 0-5cm soil layer and the vegetation transpiration from the
root zone soil layer are partitioned by separating MODIS LST (Land
Surface Temperature) into its soil and vegetation components. The
partitioning method relies on a contextual interpretation of MODIS LST
and MODIS NDVI (Moran et al., 1994). MODIS-derived soil temperature
is first used to estimate Soil Evaporative Efficiency (SEE) defined as the
ratio of actual to potential soil evaporation, which is known to be re-
latively constant during the day on clear sky conditions. DisPATCh then
distributes high-resolution soil moisture around the low-resolution
observed mean value using the instantaneous spatial link between op-
tical-derived SEE and near-surface soil moisture (Malbéteau et al.,
2016). The downscaling relationship is written as:

0SMod

SM; km = SM., +
1km 40 km ( 5SEE

) X(SEE; km — (SEE} tm))
40 km (1)
with being SMy k,, the SMOS level 2 soil moisture, SEE; y,, the MODIS
derived soil evaporative efficiency (SEE), (SEE; ) its average within a
SMOS pixel and 8SM,,,,4/SEE the partial derivative evaluated at SMOS
scale of soil moisture with respect to SEE. MODIS derived soil eva-
porative efficiency is expressed as

SEEl om = Ts,max - Ts

2)
with being T; the MODIS derived soil skin temperature, T; 4, the soil
skin temperature in dry conditions (at SEE = 0) and Ty y;, the soil skin
temperature in wet conditions (at SEE = 1). In this study, T; p, is es-
timated as the minimum MODIS LST within the SMOS pixel. MODIS
derived soil skin temperature is estimated as

T;,max - Ts,min

_ Tvopis — £, T,
1-f, 3)

with Tyoprs being the 1 km resolution MODIS land surface temperature,
f, the MODIS derived fractional vegetation cover and T, the vegetation
temperature. In this study vegetation temperature in Eq. (3) is esti-
mated at 1-km resolution with the “hourglass” approach in [Moran
et al., 1994].

A linear approximation for the SEE model (Manabe, 1969) was used
as in Merlin et al. (2013), Molero et al. (2016):

SM
SEE 00 = ——
mod SM

p ()]
with SM, being a soil parameter.

The algorithm uses when available ascending and descending passes
of SMOS L2, MODIS/Terra 16-day vegetation indices and MODIS Terra
and Aqua daily land surface temperature 1 km grid product. The SMOS
L2 products available from ESA are the nominal soil moisture products
and use the mission operational processing chain. Products are avail-
able within a 12 h delay since data sensing.

The processing is divided in the steps illustrated in Fig. 2:

s

® Preliminary registration (only for MODIS input products): the
MODIS input products are projected onto a rectangular grid.

e Common grid projection: the input products are all projected into a
common grid, this way they can easily be combined, regardless of
the original type or size of the input files.

e Disaggregation: the SMOS and MODIS products that share location
and time are combined using the DisPATCh disaggregation algo-
rithm.

e Temporal averaging: in order to have a file per monthly-decade, all
the DisPATCh output files in a decade are averaged.

e Spatial merging: in order to have a single file per macro-region, all
the sub-region (12 MODIS tiles) are spatially merged.

o Geotiff conversion: the ASCII grid output files are converted into
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Preliminary Registration

v
Common Grid
Projection

Disaggregation

Temporal Averaging

SMELLS 1km
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For each input file

Combining SMOS and
MODIS data in a same
location and time

For each sub-region

Merges all sub-region
files with same time

; For each merged and
! averaged file

Fig. 2. SMELLS 1 km soil moisture products processing flow.
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Fig. 3. Fam el Hisn in-situ measurements and SMELLS 1 km product temporal
evolution.

Geotiff images using a color code agreed with users with the purpose
of enhancing relevant soil moisture range.

3.2. SMELLS 100 m product

The development of the SM 100 m product is based on the following
hypothesis:

o The temporal variations of the backscatter at the pixel resolution are
mainly due to soil moisture variations (i.e. roughness and/or vege-
tation variations are neglected). In that case, the sensitivity of
backscatter to soil moisture is expected to be positive i.e. backscatter
increases with soil moisture because reflectivity increases due to the
higher dielectric constant of wet soil with respect to dry soil (Ulaby
et al., 1986).

o The averaged high resolution (100 m) soil moisture at the 1 km scale
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should be equal to the SM

The processing of S1 data follows the typical procedure: calibration,
multilook, terrain-correction and speckle filter. The backscatter is es-
timated in dB at the 100 m resolution on a fixed grid defined within the
Users Areas of Interest. For the angular correction, considering that all
pixels are within desert areas with scarce vegetation, the hypothesis is
made that the same correction is applicable to all pixels. Azimutal angle
variations are taken into account by processing separately ascending
and descending passes.

We estimate the backscatter sensitivity to soil moisture in each high
resolution pixel using the following relationship:

dByyet — dBgry

slope =——
P€100 m SMyyer — SMay,

)
where dB,,; is the backscatter (in dB) of the S1 image on the wet day,
dByyy is the backscatter (in dB) of the S1 image on the dry day, SM,,; is
the SM, ,, on the wet day and SMy,, is the SM, 4, on the dry day.
Then we average slope,, ,, over the 1km pixel to estimate slope,,,.

1
slope, ,, = ~N E slopey g 1,

(6)
where N is the number of 100 m pixels within the 1km pixel (i.e
N = 100).

Negative values of slope are not possible according to our first hy-
pothesis, we thus set slope, ,,,, equal to 0 when a negative value is es-
timated. This sensitivity (slope, ,,,) is then used to estimate the high-
resolution soil moisture smyq ,, using the following equation:

dByye; — dBgyy

Sl0pe,

SMyoom = + SMdry

@)

The high resolution soil moisture satisfies the following equation:

1
SMy jm = N 2 SM00 m 8)
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Fig. 4. in-situ correlation with SMELLS 1 km product for the Fam el Hisn, Akjout, Yelimané and Tamanraset soil moisture stations respectively.

Table 1
RMSE, R and bias between SMELLS 1 km and SMELLS in-situ SM.

SMELLS 1 km product

R RMSE bias
Akjoujt 0.78 0.020 0.016
FamHisn 0.67 0.020 —0.016
Yelimane 0.81 0.045 0.002
Tamanraset 0.45 0.154 —0.138

where SM, ,, is passive MW disaggregated SM at 1 km and smqg ,, is S1
derived soil moisture at 100 m.

That is, the average at 1 km resolution of the 100 m resolution soil
moisture is equal to the low-resolution (1 km) soil moisture. It is gen-
erally acknowledged, that HH and VV polarizations are highly corre-
lated with soil moisture, whereas VH or HV polarizations are con-
sidered to be more correlated with roughness and vegetation (Ulaby
et al., 1986; Oh et al., 2002). However, we have applied Egs. (5), (6)
and (7) to both VV and VH polarizations. Consequently two different
estimates of soil moisture at 100 m are obtained.

3.3. Validation methodology

In order to validate the soil moisture products we can envisage two
approaches:

e validate the temporal representativeness of the product, this ap-
proach can only be done when long-term series of the product exist,
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Fig. 5. Tondi in-situ measurements and SMELLS 1 km product temporal evo-
lution.

o validate the spatial representativeness of the product, this approach
needs validation data sampled at the same spatial scale as the pro-
duct to validate.

The long time series of the SMELLS 1 km product allows to validate
its temporal representativeness. For that purpose, the hourly ground
based soil moisture observations from the SMELLS and AMMA-CATCH
sites are averaged during the decadal period to match the SMELLS
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Table 2
R, RMSE and bias between SMELLS 1 km and AMMA in-situ SM.

SMELLS 1 km product

R RMSE Bias
Agoufou 0.93 0.039 0.030
Tondi 0.82 0.046 0.030
Wankama 0.71 0.040 0.027
Bani 0.79 0.052 0.038

products temporal sampling. When there is more than one sensor at the
surface depth, the different sensor measurements are averaged. The
datasets are evaluated quantitatively using the following statistics: the
root mean square error (RMSE), coefficient of determination (R) and
bias.

In the case of the SMELLS 100 m product the validation of the
temporal representativeness is not possible. Indeed, a robust calibration
of S1 data has not been possible before the end of the project due to a
lack of wet conditions encountered in the SMELLS desert area in
2016-2017. Therefore, SMELLS 100 m products are scattered in time
and cannot be validated against in-situ soil moisture measurements.
Consequently, an initial validation of the SMELLS 100 m was attempted
by comparing the product with a SM index based on thermal (Landsat)
imagery. Similarly to Eq. (2), a thermal-derived SM index (SEE) can be
obtained by normalizing the Landsat LST from the theoretical dry and
wet LST values estimated from the LST-NDVI feature space (e.g. Wan
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et al., 2004) or from an energy balance model (Stefan et al., 2015). Over
a relatively flat terrain, in the absence of vegetation cover and under
heterogeneous SM conditions (i.e. after a significant rainfall event) the
dry and wet LST are approximated by the maximum and minimum
observed LST value, respectively.

LSTpex — LST

SEE = ——ommax = 97
LSTax — LSTyin

(C)]
where LST,,, is the maximum LST within the whole LandSat scene and
LST,;, minimum LST within the whole LandSat scene.

4. Results
4.1. SMELLS 1 km product

4.1.1. SMELLS Stations

Fig. 3 shows the temporal evolution of the soil moisture measure-
ments provided by the Fam el Hisn station in Morocco (two surface
sensors in black and grey lines) together with daily SMELLS 1km
product (black dots). Soil moisture is provided in volumetric percentage
expressed in m® m™~2 units. The surface soil moisture conditions are
extremely dry with values around 0.02m® m™>. Surface sensors mea-
surements clearly shown the impact of rain events. SMELLS product is
showing also extremely dry soil moisture values and clearly captures
rain events. However, some of the rain events captured by the 1km
SMELLS products (around DOY 480 and DOY 600) are not captured by
the in-situ soil moisture stations. This could be due to precipitation
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Fig. 6. in-situ correlation with SMELLS 1 km product for the Agoufou, Tondi, Wankama and Bani soil moisture stations respectively.
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Fig. 7. Soil Moisture product at 1 km (upper panel) and 100 m (lower panel) spatial resolution on May 22th, 2015.

events very localized that did not touch where the soil moisture station
is located. These precipitation events could increase the average soil
moisture within the 1km pixel but show no impact on soil moisture
measurements by the station.

Over the Fam el Hisn station, the correlation of the SMELLS product
with in-situ measurements is R = 0.67 and RMS and bias are low
0.02m>® m~2 and —0.016 m®m ™3 respectively. Fig. 4 is showing the
correlation between the decadal SMELLS 1 km product and the in situ
measurements at 5 cm depth for the Fam el Hisn, Akjoujt, Yelimané and
Abalessa soil moisture stations respectively.

Over the Akjoujt station, the correlation values are good with R
=0.78 and errors are low with RMS = 0.020m> m~> and bias
=0.016m*> m >

Over the Yelimané (Mali) station, after DOY 250 surface soil
moisture sensors started an erratic behaviour that could be linked to
sensor lack of adequate contact with the coarse grains (in sand). Until

that date, SMELLS 1 km product correlation with surface soil moisture
(5 cm) results are very good with R = 0.82 and RMS = 0.042. m®m ™3,
Further analysis is based in the comparison with the soil moisture
sensor at 15 cm. The results from that comparison are very good with R
= 0.81 and RMS = 0.045m>® m™? and bias 0.002m> m 3. The rela-
tively high RMS could be due to the different sensing depth between the
SMELLS products and the sensors.

Over the Abalessa station in Tamanraset, one of the surface sensors
started an abnormal behaviour from DOY218 in 2016 therefore only
data from the other sensor was used for the comparison. By end of 2016
both surface sensors started an abnormal behaviour. The station is lo-
cated in a very remote place which impeded the reparation of the
malfunction. Consequently the available dataset for the comparison is
rather short. Over Tamanraset station, in-situ sensors provide an aver-
aged value of SM = 0.10m® m ™2 during the dry period and values of
SM = 0.50 m® m™? after a rain event. Both in-situ and remote sensed
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Fig. 8. SMELLS 100 m product (top) and SM index (SEE) (bottom) derived from Landsat TIR over a selected area in Morocco.

react simultaneously to rain events (not shown). In contrast to the other
soil moisture stations, correlation values are medium R = 0.45 (could
be partly due to the short time series) and RMS is high RMS = 0.154 m?
m ™3 but mainly due to the high bias (0.137 m® m~%). These results
seem to indicate that the location of the station might not be re-
presentative of the 1 km pixel.

Table 1 summarizes the statistic results from the comparison of the
1 km products with the SMELLS stations.
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4.1.2. AMMA sites

Fig. 5 shows the comparison of the SMELLS 1 km product over the
AMMA-CATCH Tondi station. On the left panel the temporal evolution
of the surface soil moisture sensor (grey line) is shown while the black
dots indicate the daily available SMELLS 1km product. The plot also
shows that SMELLS soil moisture is noisy for extremely dry soil
moisture conditions. The comparison results with the AMMA-CATCH
stations are very good with values of RMSE around 0.04 m® m ™2 and
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Fig. 9. SMELLS 100 m product comparison with SM index (SEE) derived from Landsat TIR.

R > 0.80 for the SMELLS 1 km product.

Table 2 summarizes the statistic results from the comparison of the
1 km products with the AMMA stations for both the decadal and daily
products.

4.2. SMELLS 100m

The development of the Soil Moisture product at 100 m, needs co-
incident SMOS and S1 acquisitions in both wet and dry soil moisture
conditions. The number of acquisitions of S1 over the users areas of
interest during the project development was sparse. The number of
valid acquisitions was further reduced because during the summer dry
period, extending from beginning June to end September, the back-
scatter sensitivity to soil moisture was negative. This effect, which is in
contradiction with theory, has already been observed over arid and
semi-arid climates. It is related to the increase of roughness due to in-
crease of penetration depth in completely dry soils (Wanders et al.,
2012; Wagner et al., 2013; Escorihuela and Quintana-Segui, 2016). As a
consequence, during the whole summer period is not possible to esti-
mate the high resolution soil moisture based on S1 data. A generalized
lack of coincident soil wet conditions with S1 acquisitions encountered
in the SMELLS desert area in 2016-2017, has hindered a robust cali-
bration of S1 algorithm.

The comparison between the high resolution soil moisture obtained
from VH polarisation and VV polarisation, showed higher sensitivity
(slope values) for the VH polarisation and, in general, also more posi-
tive slope values (i.e. the high resolution product could be retrieved for
more pixels). Generally, VV polarisation is expected to be more adapted
to soil moisture estimation than VH polarisation (Ulaby et al., 1986; Oh
et al., 2002). Consequently, these preliminary results should be taken
with care and need to be confirmed when more data are available
(Fig. 6).

As an example, Fig. 7 shows the comparison between the 1 km and
the 100 m soil moisture product (derived from the VH polarisation)
over one user area of interest in Morocco. The figure shows that
SMELLS 100 m product depicts higher resolution patterns that are not
present in the 1 km product.

The proposed quantitative validation of the SMELLS 100 m product
was restricted because we found no exact time coincidences between S1
and Landsat over the users areas of interest. The closest match between
a SMELLS 100 m product and Landsat was between a Landsat 7 TIR
image acquired over MOR4 on May 21st, 2015 and the SMELLS 100 m

product on May 22st, 2015.

First of all, we compared the SMELLS 1 km product on May 21st,
2015 and on May 22nd, 2015 to the estimated SEE from Landsat ag-
gregated at the 1 km scale to ensure the comparison was pertinent. Note
that the comparison has to be carefully considered since a day differ-
ence is long with the evaporative demand occurring in the desert. The
correlation between Landsat SEE estimate and SMELLS 1 km product
was higher (R = 0.43) on May 22nd, 2015 than on May 21st, 2015
indicating that the rain event was occurring after SMOS acquisition on
May 21st, 2015 and therefore the comparison with SMELLS product on
May 22nd, 2015 was thus pertinent. Next, in order to compare the two
high resolution products we selected a relatively flat area within the
two coincident footprints. Fig. 8 shows the SMELLS 100 m product and
the LandSat 7 SEE derived over the selection area between latitudes
31.08° and 32.05° N and longitudes —4.30° and —4.00° E.

The plot shows some similarities in terms of spatial structures and,
in general, areas of high and low soil moisture values correspond. Fig. 9
shows the correlation plot between the SMELLS 100 m product on May
22nd, 2015 and SEE estimated from Landsat7 TIR on May 21st, 2015
over one user area of interest in Morocco. Correlation values are poor
(R = 0.28) at 100 m resolution. This could be due to uncertainties in
both SMELLS 100 m and Landsat SM index. However, the upper edge of
the point cloud is quite well defined, suggesting that a strong correla-
tion would exist between SMELLS 100 m and Landsat SM index for high
S1 backscatter values, corresponding to S1 data collected over flat
terrain.

5. Conclusions

This paper presents the soil moisture products developed in the
framework of desert locust management in response to authoritative
end-user requirements. The SMELLS project has developed a Soil
Moisture product for desert locust management at two different spatial
resolutions: 1 km and 100 m. The SMELLS 1 km product covers a vast
area in West Africa including the entire Users Area of Interest between
latitudes 10-40°N and longitudes 20° W to 20° E. This long-term dataset
constitutes a unique tool to evaluate the impact of this variable for
Desert Locust management and is freely available on the project data
portal (smells.isardsat.com/data-portal). The SMELLS 1 km product has
been thoroughly validated and its accuracy is amongst the best soil
moisture products but at a higher spatial resolution (1 km against ty-
pically 40 km).
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For the purpose of soil moisture validation, 4 soil moisture stations
where installed in desert areas (one in each user country). Current
comparison of the Soil Moisture product at 1km with in-situ soil
moisture stations shows good values of correlation and low RMSE ex-
cept in one station where sensors showed an abnormal behaviour. The
comparison results with the long-term dataset of the AMMA stations are
very good with high values of correlation and RMS around 0.04 m*®
m~3,

The SMELLS 100 m product has room for improvement. The low
number of acquisitions on wet dates has limited the development of the
product over the Users Areas. Since the launch of S1B in April 2016, the
number of acquisitions has dramatically increased. This will surely
contribute for future improvements. In situ data collected at the
SMELLS cal/val sites are expected to be very useful for calibration
purposes when long time series will be available.

The Soil Moisture product at 1 km will be integrated into the na-
tional and global Desert Locust early warning systems in national locust
centres and at DLIS-FAO, respectively. The users encouraged the Soil
Moisture products be extended to the entire Desert Locust recession
area (0-40N/20W-80E) because they are certain the preventive control
strategy would be more effective with the introduction of these soil
moisture products.
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