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Abstract: The objective of this study was to assess the performance and predictive uncertainty
of the Soil and Water Assessment Tool (SWAT) model on the Bani River Basin, at catchment and
subcatchment levels. The SWAT model was calibrated using the Generalized Likelihood Uncertainty
Estimation (GLUE) approach. Potential Evapotranspiration (PET) and biomass were considered in
the verification of model outputs accuracy. Global Sensitivity Analysis (GSA) was used for identifying
important model parameters. Results indicated a good performance of the global model at daily as
well as monthly time steps with adequate predictive uncertainty. PET was found to be overestimated
but biomass was better predicted in agricultural land and forest. Surface runoff represents the
dominant process on streamflow generation in that region. Individual calibration at subcatchment
scale yielded better performance than when the global parameter sets were applied. These results
are very useful and provide a support to further studies on regionalization to make prediction in
ungauged basins.

Keywords: SWAT; Bani catchment; West Africa; discharge; daily calibration; performance and
predictive uncertainty

1. Introduction

Water resources managers are facing challenges in many river basins across the world due to
limited data availability. Anthropogenic activities add more uncertainties to this task by inducing
changes to land and climate at different scales [1,2]. This situation is more pronounced in developing
countries, where in many river basins no runoff data are available [3–7] and the existing ones are of
questionable quality or, at best, short or incomplete.

The Niger River basin is not an exception to that rule. The general situation of insufficient data is
exacerbated by a deterioration of measurement networks. In the 80s and 90s, for instance, hydrometric
stations were reduced to a minimum and many have been abandoned (e.g., [8]). To prevent the
hydrologic observing system from more degradation, the Niger Basin Authority (NBA) has set the
Niger-HYCOS project, which one of its specific objectives is to improve data quality of the Niger Basin.
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For this purpose, the project identified and brings assistance in the installation and the management of
105 hydrometric stations shared by nine countries drained by the River, and contributes to the capacity
building of national hydrological services.

In its fifth assessment report on regional aspects of climate change, the Inter-Governmental Panel
on Climate Change [9] has shown that adaptation to climate change in Africa is confronted with a
number of challenges among which is a significant data gap. Too many basins lack reliable data
necessary to assess, in details, impacts of climate change on different components of the hydrological
cycle and to develop strategies of adaptation related to each specific impact. Thus, it is germane to
predict hydrological variables in ungauged basins for building high adaptive capacity by improving:
(i) water resources knowledge, planning, and management; (ii) identification and implementation
of strategies of adaptation to climate change in the sector of water, and (iii) ecological studies for a
sustainable development.

The application of rainfall-runoff models and then, transferring model parameters from gauged
to ungauged catchments is a long-standing method [10] for flow prediction in ungauged basins and
has been highlighted during the decade of Prediction in Ungauged Basins (PUB) launched in 2003 by
the International Association of Hydrological Sciences (IAHS) and concluded by the PUB Symposium
held in 2012. This is the framework of the present study, in which the Soil and Water Assessment Tool
(SWAT) model was calibrated on the Bani catchment (Niger River basin) and the most sensitive model
parameters were estimated.

Many studies have successfully applied the SWAT model in West Africa, on different river basins.
Examples include, among others: calibration of the SWAT model on the Niger basin [11–16], the
Volta basin [12–15,17–19] and the Oueme catchment in Benin [15,20–22]. However there are few
published papers on the application of the SWAT model on the Bani catchment. For instance, Schuol
and Abbaspour [12] and Schuol et al. [14] applied the SWAT model to selected watersheds in West
Africa including the Niger basin and modeled monthly values of river discharges (blue water) as
well as the soil water (green water), and clearly showed the uncertainty of the model results. They
developed and applied a daily weather generator algorithm [13] that uses 0.5 degree monthly weather
statistics from the Climatic Research Unit (CRU) to obtain time series of daily precipitation as well as
minimum and maximum temperatures for each sub-basin. These generated weather data were then
used as input for model setup and the authors concluded that “discharge simulations using generated
data were superior to the simulations using available measured data from local climate stations”.
Reported Nash-coefficient values obtained vary largely between sub-basins and were principally
presented as average intervals limiting thus, our understanding of model performance at finer spatial
(subbasin) and temporal (daily) scales.

Laurent and Ruelland [23] successfully calibrated SWAT on the Bani catchment using daily
measured climate data. They interpolated precipitation data on a regular grid by the Inverse Distance
Weighted (IDW) method, which has proven to yield better results than kriging, Thiessen and spline
methods, especially when a hydrological model is used [24]. To show the model performance, Laurent
and Ruelland [23] reported both discharge and biomass calibration results on an average annual basis,
but did not assess model calibration uncertainty. Moreover, both above-mentioned studies performed
interpolation of input data out of the model framework to obtain a time series of daily weather data for
each sub-basin. However, the results of interpolation methods are strongly influenced by the density
and spatial distribution of the measurement stations used in the interpolation [25]. Such a density of
data is not always available in developing countries.

Against this background, the objective of this study was to assess the performance of the SWAT
model and its predictive uncertainty on the Bani at catchment and subcatchment levels. More
specifically, this meant to: (i) set up a hydrological model for the Bani catchment using the SWAT
program; (ii) calibrate the model at the catchment outlet at daily and monthly time steps and assess the
predictive performance and uncertainty; (iii) evaluate the spatial performance of the watershed-wide
model within the catchment by validating it at two internal stations; and (iv) calibrate the model at



Water 2016, 8, 178 3 of 23

the sub-catchments separately and provide a comparative assessment of the model performance at
different spatial scales.

The originality of this study was the daily performance of the SWAT model at the whole catchment
outlet and at two internal stations. Another important output of this paper was the involvement of
evapotranspiration (the most important component of the water balance after rainfall especially under
warm climate) in the verification of model outputs reasonability, a particular attention that has not
been considered by any previous study in the region. In addition, we used in the current work point
rain gauge data (as per SWAT’s standard procedure) opposed to areal precipitation as used in previous
studies [12–15,24,26,27] on the same basin in order to maintain the real data condition (limited in time
and space) to the extent possible.

2. Material and Methods

2.1. The Study Area

The Bani is the major tributary of the Upper Niger River. Its drainage basin is principally located
in Mali but spans in a lesser extent over Cote d’Ivoire and Burkina Faso and covers an area of about
100,000 km2 at Douna gauging station (Figure 1). The Bani watershed was chosen for this study, on
one hand, due to its relatively high-quality data availability compared to regional situation. It thus
constitutes the appropriate gauged catchment in different hydro-climatic variables. On the other hand,
this watershed has not been affected by important hydraulic structures able to significantly modify its
flow regime, making the hydrological modeling of that catchment more convenient.

The catchment’s topography (Figure 1) is characterized by a gentle elevation that ranges from 826
m in the South and the center-east to 249 m at the outlet in the North. According to FAO (2003) [28],
major soil groups are mainly constituted by Luvisol, Acrisol, and Nitosol (Figure 2a). Based on the
USGS Global Land Cover Characterization (GLCC) version 2.0 [29], agricultural land constitutes the
dominant land use category followed by savannah and forest (Figure 2b). The Bani catchment is
characterized by a Sudano-Sahelian climatic regime. The river flows from south to north along a high
rainfall gradient. Annual precipitation varies from 1250 mm at Odienne to 615 mm at Segou (average
of the period 1981–2000). The average annual discharge recorded at Douna gauging station between
1981 and 2000 was 184 m3 s´1, which is equivalent to 58 mm of surface runoff depth for an average
annual precipitation of 1000 mm. The smallest runoff values were recorded during the years 1983, 1984,
and 1987. Due to climate change, there was an abrupt decrease in rainfall in the period 1970–1971 and
remained for two decades [27,30] with a more severe impact on water resources. A decrease of more
than 60% in discharge at Douna [27,31] and lower contribution of baseflow to the annual flood [32,33]
have been reported since the 70s. Concerning future climate change impacts, the Bani basin is projected
to experience substantial decrease in rainfall and runoff especially in the long term behavior [27].

2.2. Model Description

SWAT is a river basin, or watershed, scale model developed to predict the impact of land
management practices on water, sediment, and agricultural chemical yields in large, complex
watersheds with varying soils, land use, and management conditions over long periods of time [34].
The model is semi-distributed, physically based and computationally efficient, uses readily available
inputs and enables users to study long-term impacts [35]. For a detailed description of SWAT, see
Soil and Water Assessment Tool input/output version 2012 [36] and the Theoretical Documentation,
Version 2009 [37].

The ArcSWAT (ArcGIS extension) is a graphical user interface for the SWAT model. In the
present study, the recent version, ArcSWAT2012, was used for building the hydrological model of the
Bani catchment.
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Figure 1. Localization of the Bani catchment at the Douna outlet. The altitude and the monitoring network of the catchment are also given. 
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Figure 1. Localization of the Bani catchment at the Douna outlet. The altitude and the monitoring network of the catchment are also given.
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Figure 2. (a) Soil attributes and (b) land use categories of the Bani catchment. 
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Figure 2. (a) Soil attributes and (b) land use categories of the Bani catchment.
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The hydrologic cycle simulated by SWAT is based on the water balance equation:

SWt “ SW0 `

t
ÿ

i“1

´

Rday ´Qsur f ´ Ea ´Wseep ´Qgw

¯

(1)

where, SWt is the final soil water content (mm H2O), SW0 is the initial soil water content on day
i (mm H2O), t is the time (days), Rday is the amount of precipitation on day i (mm H2O), Qsurf is
the amount of surface runoff on day i (mm H2O), Ea is the amount of evapotranspiration on day
i (mm H2O), Wseep is the amount of water entering the vadose zone from the soil profile on day i
(mm H2O) and Qgw is the amount of groundwater exfiltration on day i (mm H2O).

SWAT divides a basin into sub-basins which are further discretized into hydrologic response
units (HRUs), based on unique soil-land use-slope combinations. The subdivision of the watershed
enables the model to reflect differences in evapotranspiration for various crops and soils. Runoff
is predicted separately for each HRU and routed to obtain the total runoff for the watershed. This
increases accuracy and gives a much better physical description of the water balance [37].

Various hydrological models exist and there is no strict guideline on the selection of the model.
The SWAT model uses a modified version of the Curve Number method, which was developed
in the US for specifically calculating surface runoff generation. Therefore the model is especially
suitable for regions with a high share of overland flow on total runoff. Other advantages of the SWAT
model are that it allows a number of different physical processes (hydrologic, sediment, pollutants)
to be simulated in a watershed. It has been previously validated for several large-scale watersheds
throughout different climate contexts across the globe and has performed satisfactorily even in data
poor and complex catchments (e.g., [38,39]). SWAT is also very flexible in terms of using specific and
appropriate soil and land use information’s of the watershed to be modeled by adding them to its
database. However in this context, it is worth using a low cost or free model, which West African
National Hydrological services could afford due to economic constraints.

2.3. Input Data and Databases

The SWAT model for the Bani was constructed using weather data and globally and freely
available spatial information described in Table 1. Daily precipitation data from 11 rain gauges as
well as daily maximum and minimum temperature from five weather stations located mainly on
the catchment were used as input. The location and spatial distribution of input precipitation and
temperature stations are represented in Figure 1.

It is worth noting the weak spatial density of the measuring network that is characterized by a
rain gauge for more than 9000 km2. Precipitation data are complete at the majority of the sites except
for a few numbers of them, where the maximum missing data percentage varies between 8.5% and
100% in a year. Many more missing values are recorded in the temperature data. Collected climate
data time series were of varying lengths. Thus, a common period of observation from 1981 to 2000 was
first determined. Retained data then underwent a thorough quality control as recommended by the
World Meteorological Organization (WMO) in the guide to climatological practices, third edition [40].
Three procedures were applied: (1) completeness check; (2) plausible value check; and (3) consistency
check. The aim of the check is to detect erroneous data in order to correct and, if not possible, to delete
it. Missing values were filled by the weather generator during the running time. For this purpose,
the excel macro WGNmaker4 [41] was used to calculate weather stations statistics needed to generate
representative daily climatic data.

Two different databases were used to set up the model. The SWAT database is composed by the
crop database and the user soils database, both included in swat2012.mdb. They are named crop1
and soil1, respectively. Crop1 was kept default whereas soil1 was filled with soils transferred from
mwswat2009.mdb (the database of the MapWindow interface for SWAT). The second database is
composed by crop2 and soil2. Four land use categories define crop2: forest, savannah-bush, savannah,
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and steppe whereas six major soil groups are added to soil2: Acrisol, Cambisol, Gleysol, Lithosol,
Luvisol ferrique, and Nitosol. Detailed description of this database can be found in [23].

Table 1. Input data of the SWAT model for the Bani catchment.

Data Type Description Resolution/Period Source

Simulation Data

Topography Conditioned DEM 90 m USGS hydrosheds [42]
Land use/land cover GLCC version 2 1 km Waterbase [43]

Soil FAO Soil Map Scale 1:5000000 FAO [44]
River River network map 500 m USGS Hydrosheds [42]

Weather data Rainfall, maximum and
minimum temperature Daily (1981-2000) AGRHYMET

Calibration/Verification Data

Discharge Discharge Daily (1983–1997) AGRHYMET/National
hydrological service of Mali

PET Potential
evapotranspiration 10-day (1983–1998) National Meteorological

Agency of Mali
Epan Pan evaporation Monthly (1983–1997) AGRHYMET

For calibration purpose, we used daily river discharge data at Douna, Bougouni and Pankourou
stations covering the period 1981–2000, obtained from AGRHYMET and the National Hydraulic
Direction of Mali. The period 1981–1997 was kept for calibration and validation processes as it exhibits
few gaps. Small existing gaps were thus filled by a simple linear interpolation.

2.4. Model Setup

The catchment was delineated and divided into sub-catchments based on the DEM. A stream
network was superimposed on the DEM in order to accurately delineate the location of the streams.
The threshold drainage area was kept as default and additional outlets were considered at the location
of stream gauging stations to enable comparison of measured discharge with SWAT results. The
whole catchment was so discretized into 28 sub-catchments, which were further subdivided into 181
HRUs based on soil, land use, and slope combinations. Further parameters have been edited through
the general watershed parameters and SWAT simulation menus and are reported in Table 2. Four
simulations were performed based on land use and soil databases combinations: crop1soil1, crop1soil2,
crop2soil1, and crop2soil2. A Nash-Sutcliffe Efficiency (NSE) [45] was thereafter calculated at Douna
by comparing measured discharges against each default simulation and the one which will yield the
highest NSE value will be kept for calibration and validation processes.

Table 2. Input methods for SWAT model simulation on the Bani catchment.

Code Description Method

General Watershed Parameters

IPET Potential Evapotranspiration method Hargreaves
IEVENT Rainfall/runoff/routing option Daily Rainfall/CN runoff/Daily routing

ICN Daily Curve Number calculation method Soil moisture (Plant ET at Bougouni)
IRTE Channel water routing method Variable storage

SWAT Simulation

Period of simulation - 1981–2000
NYSKIP Warm-up period Two years (1981 and 1982)

2.5. Calibration and Validation Procedures

It is commonly accepted in hydrology to split the measured data either temporally or spatially
for calibration and validation [36]. In addition to the split-sample method, a split-location calibration
and validation approach has been performed because the global parameter set is not expected to be
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optimal for sub-catchments processes in view of the high heterogeneity in terms of climate, topography,
soil, and land use characterizing such a large-area watershed. This approach is especially needed
when prediction at data sparse sites is foreseen [46,47]. In the split-sample approach, the model was
calibrated using discharge data solely measured at the catchment outlet by splitting the homogenous
period mentioned in Section 2.3 into two datasets: two-thirds for calibration (1983–1992), and the other
one for validation (1993–1997). To implement the split-location method, the model was calibrated at
Douna and then validated at intermediate gauging stations (Bougouni and Pankourou) by turning
the model on the same period (1983–1992), using the same behavioral parameter sets determined at
the outlet.

Calibration was thereafter performed at Bougouni and Pankourou stations individually, and
both modeling frameworks facilitated a comparative analysis of model performance and predictive
uncertainty through scales. At this step, the calibration at Bougouni did not succeed within realistic
range of the Curve Number (CN). Then, the daily CN calculation method was changed to Plant ET for
simulation at Bougouni because soil moisture method is found to predict too much runoff in shallow
soils [36]. An additional parameter (CNCOEF) was then necessary as required by the plant ET method
and fixed to 0.5 in the Edit SWAT input menu.

Calibration/validation, uncertainty analysis, and sensitivity analysis were performed within
the SWAT Calibration and Uncertainty Programs SWAT-CUP version 2012 [48] using Generalized
Likelihood Uncertainty Estimation (GLUE) procedure [49]. GLUE is a Monte Carlo based method for
model calibration and uncertainty analysis. It was constructed to partly account for non-uniqueness
of model parameters. GLUE requires a large number of model runs with different combinations of
parameter values chosen randomly and independently from the prior distribution in the parameter
space. The prior distributions of the selected parameters are assumed to follow a uniform distribution
over their respective range since the real distribution of the parameter is unknown. By comparing
predicted and observed responses, each set of parameter values is assigned a likelihood value. The
likelihood functions selected here is principally the NSE as it is very commonly used and included in
SWAT-CUP for GLUE performance assessment. In this study, the number of model runs was set to
10,000 and the total sample of simulations were split into “behavioral” and “non-behavioral” based on
a threshold value of 0.5, a minimum threshold for NSE recommended by [50] for streamflow simulation
to be judged as satisfactory on a monthly time step. In that case, only simulations which yielded a
NSE ě 0.5 are considered behavioral and kept for further analysis.

In the calibration procedure, we included 12 parameters that govern the surface runoff and
baseflow processes. The real approached baseflow alpha factor (ALPHA_BF) value has been determined
by applying the baseflow filter program developed by [51] and modified by [52] to streamflow data
measured at the three outlets. One novelty in this study was to involve the Manning’s roughness
coefficient for overland flow (OV_N) and the average slope length (SLSUBBSN) parameters that are
not commonly used in calibration. The reason behind this choice was to correct the tendency of the
model to delay the runoff as detected by graphical analysis. The remaining parameters were chosen
based on the literature [53–55] and their adjusting ranges from the SWAT Input/Output version 2012
document (e.g., [56]).

2.6. Model Performance and Uncertainty Evaluation

To evaluate model performance, both statistical and graphical techniques were used as
recommended by [50] based on previous published studies. The following quantitative statistics
were chosen: NSE to quantify the relative magnitude of the residual variance (“noise”) compared to
the measured data variance, PBIAS for water balance error, and R2 to describe the degree of collinearity
between simulated and measured data, and were given for the best simulation. The NSE, R2 and
PBIAS were determined using the following equations:
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NSE “ 1´

řn
i“1

´

Yobs
i ´Ysim

i

¯2

řn
i“1

´

Yobs
i ´Yobs

¯2 , (2)

R2 “

¨

˚

˚

˝

řn
i“1

´

Yobs
i ´Yobs

¯´

Ysim
i ´Ysim

¯

c

řn
i“1

´

Yobs
i ´Yobs

¯2
c

řn
i“1

´

Ysim
i ´Ysim

¯2

˛

‹

‹

‚

2

, (3)

PBIAS “

řn
i“1

´

Ysim
i ´Yobs

i

¯

ˆ 100
řn

i“1 Yobs
i

(4)

where Ysim
i and Yobs

i are the ith simulated and observed discharge, respectively, Ysim and Yobs the mean
value of simulated and observed discharge, respectively and n the total number of observations.

The NSE varies between´8 and 1 (1 inclusive), with NSE = 1 being the optimal value. The optimal
value of PBIAS is 0, with low PBIAIS in absolute values indicating accurate model simulation. Positive
values indicate model overestimation bias, and negative values indicate model underestimation bias.
R2 ranges from 0 to 1, with higher values indicating less error variance, values greater than 0.5 are
considered acceptable.

In the present study, model performance, for a monthly time step, will be judged as satisfactory
if NSE > 0.50 and PBIAS < ˘ 25% for discharge [50] and if the graphical analysis reveals a good
agreement between predicted and measured hydrographs.

The GLUE prediction uncertainty was then quantified by two indices referred to as P-factor and
R-factor [57]. The P-factor represents the percentage of observed data bracketed by the 95% predictive
uncertainty (95PPU) band of the model calculated at the 2.5% and 97.5% levels of the cumulative
distribution of an output variable obtained through Latin hypercube sampling. The R-factor is the ratio
of the average width of the 95PPU band and the standard deviation of the measured variable. For
uncertainty assessment, a value of P-factor > 0.5 (i.e., more than half of the observed data should be
enclosed within the 95PPU band) and R-factor < 1 (i.e., the average width of the 95PPU band should be
less than the standard deviation of the measured data) should be adequate for this study, especially
considering limited data availability.

2.7. Sensitivity Analysis

A Global Sensitivity Analysis (GSA) was performed after 10,000 simulations on the 12 parameters
included in the calibration process. Only GSA is allowed with GLUE in SWAT-CUP and can be
performed after one iteration. A t-test is then used to identify the relative significance of each parameter.
T-stat provides a measure of sensitivity and p-value determines the significance of the sensitivity. A
larger t-stat in absolute value is more sensitive and a p-value close to zero has more significance [48].

2.8. Verification of Model Outputs

To evaluate the accuracy of the SWAT model to predict PET, we considered the model average
annual basin output which was computed by the Hargreaves method [58] and compared it to PET
values calculated with two other methods: the FAO-Penman Monteith method and the pan evaporation
method. The estimates from those three methods are hereinafter referred to as PEThar (for average
annual PET estimated by the Hargreaves method), PETpen (for average annual PET estimated by the
Penman-Monteith method) and PETpan (for average annual PET estimated by the pan evaporation
method). The modified Penman method is taken herein as the standard because it was considered
to offer the best results with minimum possible error [59]. Average observed 10-day PETpen were
collected and computed to obtain average annual value on the calibration-validation period. Monthly
observed pan evaporation data were used to estimate PETpan. Doorenbos and Pruitt [60] related pan
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evaporation to reference evapotranspiration, ET0 (or PET) using empirically derived coefficients. PET
can be obtained by:

PET “ Kp ˆ Epan (5)

where, PET is the potential evapotranspiration in mm¨day´1, Epan represents the pan evaporation in
mm¨day´1, and Kp is the pan coefficient, which is the adjustment factor that depends on mean relative
humidity, wind speed, and ground cover.

As the pan factor in the Bani catchment could not be exactly determined due to lack of information
about the pan environment and the climate, the average value of 0.7 [61] was used in this study. The
PBAIS was again used as the evaluation criterion representing the deviation of the predicted PET
compared to the one considered as the baseline.

3. Results

3.1. The Catchment Scale Model

3.1.1. Global Model Performance

In the preliminary analyses, we tested different land use and soil databases and kept for
subsequent analysis the simulation of databases combination crop2soil2, which yielded the highest
default, i.e., before calibration, performance (NSE = 0.09). The impact of land use database was not
so significant, but the type of soil database used to setup the model was very decisive in obtaining a
simulation with the smallest overall error. SWAT-CUP output results are presented as 95PPU as well
as the best simulation (Table 3).

Table 3. Model performance statistics for the Bani catchment at Douna, Pankourou, and Bougouni
discharge gauging stations.

Time Step Calibration (1983–1992) Validation (1993–1997)

Criterion Douna Pankourou Bougouni Douna Pankourou Bougouni

Daily
NSE 0.76 0.73 0.66 0.85 0.77 0.37
R2 0.79 0.74 0.68 0.87 0.83 0.57

PBIAS (%) ´12.23 6.08 ´15.01 ´23.26 ´19.57 ´59.53

Monthly
NSE 0.79 0.78 0.72 0.85 0.81 0.47
R2 0.82 0.78 0.76 0.88 0.91 0.68

PBIAS (%) ´15.78 5.93 ´13.14 ´26.91 ´19.54 ´58.40

Overall, calibration and validation of the hydrological model SWAT on the Bani catchment at
the Douna outlet yielded good results in terms of NSE and R2 for both daily and monthly timesteps.
364 simulations for daily calibration against 588 for monthly calibration returned a NSE ě 0.5 and
were thus considered as behavioral. Very good NSE and R2 values were obtained and were greater
than 0.75 for the best simulations. Moreover, it can be noticed that the performance is slightly lower
for daily calibration compared to monthly calibration, but always higher for the validation period.
Only one year (1984) over 10 showed very low performance with a NSE of 0.23.

The water balance prediction can be considered as accurate at a daily time-step but becomes hardly
satisfactory for monthly calibration, which is characterized by higher PBIAIS values showing increasing
errors in the prediction. For example, the PBIAIS values increased from daily to monthly time intervals:
from ´12% to ´16% in the calibration period and from ´23% to ´27% in the validation period
(Figure 3). With regard to high flow events, visual analysis of simulated and observed hydrographs
represented in Figure 3 came out with the following results: timing of peak is well reproduced
although the simulation tends to underestimate peak flows especially during dry years (e.g., 1983,
1984, and 1987).
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3.1.2. Verification of Average Annual Basin Values

Table 4 reports the average annual values of the SWAT model simulated on the Bani catchment.
However, there are not available data to enable a full verification of all model outputs at the watershed
scale. In this case, we focused on available PET and biomass for which there exist regional values.

Table 4. Average annual basin values of precipitation (P), evapotranspiration (ET), potential
evapotranspiration (PET), and biomass as SWAT outputs on the Bani catchment.

Period P (mm) ET (mm) PET (mm) a
Biomass (ton ha´1)

Agricultural
Land Generic Savannah Forest

Calibration (1983–1992) 960 895 1926 1.18 0.27 3.09
Validation (1993–1997) 1050 975 1925 1.72 0.53 5.51

a Average annual PET estimated by the Hargreaves method (herein used by SWAT).

Average annual basin values simulated by the model and described in Section 2.8 are shown in
Table 4. The analysis of these values came out with several results. On average, PEThar presented
a positive PBIAS of 11% compared with observed PETpen herein equal to 1737 mm and the latter is
very close to PETpan, estimated to 1755 mm. These results give a clear indication of overestimation
of PET by the SWAT model over the Bani catchment, an overestimation that can be attributed to the
Hargreaves method used herein by the model to compute PET.
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Table 5. Summary of the SWAT model parameters calibrated on the Bani catchment at Douna on a daily time interval.

Parameter Description Input Calibration Range Calibrated Parameters: Best
Parameter Value [Range]

Global Sensitivity Analysis

t-Stat p-Value

CN2 SCS runoff curve number II (-) ˘20% ´0.155 [´0.199; 0.102] ´54.03083 0.00000
OV_N Manning’s “n” value for overland flow (-) 0.01–30 23.153 [3.061; 29.915] 11.41603 0.00000

SLSUBBSN Average slope length (m) 10–150 149.808 [12.677; 149.924] 8.87352 0.00000
ESCO Soil evaporation compensation factor (-) 0.01–1 0.958 [0.768; 0.991] ´6.08880 0.00000

SOL_AWC Available water capacity of the soil layer
(mm H2O/mm sol) ˘20% 0.140 [´0.199; 0.197] 2.89864 0.00376

GW_DELAY Groundwater delay (days) 0.0–50 4.938 [0.487; 49.823] 1.81341 0.06980

GWQMN Threshold depth of water in the shallow aquifer
required for return flow to occur (mm H2O) 0.0–4000 3082.500 [0.043; 3995.710] ´1.51853 0.12891

REVAPMN Threshold depth of water in the shallow aquifer
for “revap” to occur (mm H2O) 0–500 173.709 [0.636; 499.845] ´0.64939 0.51610

RCHRG_DP Deep aquifer percolation fraction (-) 0–1 0.346 [0.001; 0.999] 0.46408 0.64260
GW_REVAP Groundwater “revap” coefficient (-) 0.02–0.2 0.190 [0.021; 0.199] ´0.12613 0.89963

SURLAG Surface runoff lag coefficient (-) 0.05–24 20.219 [0.076; 23.878] ´0.07433 0.94075
ALPHA_BF* Baseflow alpha factor (d´1) 0.034 0.034 ND ND

* Determined on observed discharges by applying the baseflow filter program. ND: Not Determined.
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To further investigate the model’s accuracy, we evaluated predicted biomass values over the
calibration/validation period (Table 4) against reported values for the study area. Simulated biomass
was on average 4.3 ton¨ha´1 for forest and 1.45 ton¨ha´1 for agricultural land and both are in the
ranges of observed values in the region (the observed biomass ranges between 2–4 and 2–3 ton¨ha´1

for forest and cultivated land, respectively [23,62]). Nevertheless, this component is far underestimated
for savannah with a simulated value of 0.4 ton ha´1 compared to the observed value which varies
between 0.8 and 2 ton¨ha´1 [62].

3.1.3. Sensitivity Analysis

There is a wide range of uses for which sensitivity analysis is performed. Based on the
12 selected SWAT parameters (ALPHA_BF being fixed), a GSA was used herein for identifying sensitive
and important model parameters in order to better understand which hydrological processes are
dominating the streamflow generation in the Bani catchment.

Sensitivity analysis results of 10,000 simulations are summarized in Table 5. The three most
sensitive parameters (CN2, OV_N, and SLSUBBSN) are directly related to surface runoff, reflecting
therefore the dominance of this process on the streamflow generation in the Bani catchment. Processes
occurring at soil level followed at the second position as pointed out by the sensitivity of ESCO and
SOL_AWC. Groundwater parameters happened in the last position demonstrating the low contribution
of the latter to flows measured at the Douna outlet. The same sensitive parameters were identified by
daily and monthly calibrations with only different ranks for soils parameters (ESCO and SOL_AWC).

3.1.4. Spatial Validation

The results of the spatial validation were divergent according to the location (Figure 4). For
instance, at Pankourou, the same parameter sets determined at Douna produced a good simulation on
a monthly basis (satisfactory for daily validation) whereas predictive uncertainty remained adequate
and all met our requirements (NSE > 0.5, P-factor > 0.5 and R-factor < 1). In addition, the water balance
was reasonably predicted at both time steps. In contrast, it has been recorded a complete loss of
model performance at Bougouni with unsatisfactory NSE values and more uncertainty related to input
discharge as expressed by a lower percentage of observed data (P-factor = 0.55 et 0.57 for daily and
monthly validation) inside the 95PPU band (Figure 4). Accordingly, important uncertainty could be
attributed to observed discharge at Bougouni.

3.2. The Subcatchment Model

Statistical evaluation results of the subcatchment calibration are presented in Table 3 and time
series of observed and simulated hydrographs are shown in Figures 5 and 6. Good to very good
performance was obtained at Pankourou with accurate predictive uncertainty. However, the validation
period remained unsatisfactorily simulated at Bougouni. A comparative analysis of the catchment and
subcatchment calibration performances came out with the following results:

‚ When calibrated separately, the prediction at Pankourou was slightly better, but greatly improved
at Bougouni compared to when the catchment wide model was applied.

‚ The total uncertainty of the model is smaller at Pankourou (smaller R-factor and larger P-factor)
than at the whole catchment, but larger at Bougouni.

‚ The water balance is better simulated at both internal stations compared to the watershed-wide
water balance as depicted by smaller PBIAIS values, except always in the validation period
at Bougouni.

‚ The model performance in terms of NSE and R2 was higher at the watershed-wide level than at
the sub-watershed level.

Overall, these results revealed that further calibration at the internal gauging stations was
synonymous with gain of performance at the subcatchment level.
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3.3. Model Predictive Uncertainty

In the global model, the predictive uncertainty, as indicated by the P-factor and R-factor, is adequate,
though being larger during peak flow and recession periods (reflected by larger 95PPU band). On a
daily basis, for instance, 61% of the observed discharge data are bracketed by a narrow 95PPU band
depicted by the R-factor < 1 (Table 6). It has been noted that the entire uncertainty band is, however,
very large during the year 1984 (Figure 3).

Table 6. Predictive uncertainty indices of the SWAT model for the Bani catchment at Douna, Pankourou,
and Bougouni discharge gauging stations.

Time Step Calibration (1983–1992) Validation (1993–1997)

Criterion Douna Pankourou Bougouni Douna Pankourou Bougouni

Daily P-factor 0.61 0.68 0.60 0.62 0.63 0.51
R-factor 0.59 0.41 0.57 0.51 0.29 0.35

Monthly P-factor 0.65 0.71 0.58 0.70 0.67 0.55
R-factor 0.65 0.45 0.54 0.55 0.31 0.32

It is important to note the decrease of predictive uncertainty from Douna to Pankourou. In fact,
the percentage of observed discharge bracket by 95PPU band has increased to 68%, while the width of
the uncertainty band itself has decrease to 0.41 for the daily calibration (Table 6).

The same trend has been observed for the monthly calibration. At Bougouni, results showed
a clear decrease of the uncertainty band (for daily and monthly calibration), but at the expense of
bracketing less observed data. For instance, the P-factor and R-factor decreased from 0.65 to 0.58 and
from 0.65 to 0.54, respectively, when moving from Douna to Bougouni during the monthly calibration.
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Moreover, an increase of the uncertainty band with increasing time step (daily to monthly) has
been recorded as depicted by higher R-factor values at Douna and Pankourou (from 0.59 to 0.65 and
from 0.41 to 0.45, respectively). However, the uncertainty band was reduced during the validation
period compared to the calibration period for all the stations (Table 6).

4. Discussion

4.1. Model Performance

In an effort to assess the performance of the SWAT model on the Bani catchment, we calibrated
and validated the model at multiple sites on daily and monthly time steps by using measured climate
data. There was no statistically significant difference in model performance among time intervals.
Using guidelines given in Moriasi et al. [50], the overall performance of the SWAT model in terms
of NSE and R2 can be judged as very good, especially considering limited data conditions in the
studied area. On a monthly basis, we obtained at the Douna outlet a NSE value equal to 0.79 for the
calibration period (0.85 for the validation period). These results are greater than the ones of the studies
by Schuol and Abbaspour [12], and Schuol et al. [14] at the same outlet. Schuol and Abbaspour [12]
reported indeed a negative NSE (between ´1 and 0) for the monthly calibration and a value ranging
between 0 and 0.7 for monthly validation, while Schuol et al. [14] obtained a NSE between 0 and
0.70 for both monthly calibration and validation. However, Laurent and Ruelland [23] reported a
greater performance (NSE values varying between 0.81 and 0.91 for calibration and validation period,
respectively) but on a coarser time step (average annual basis). The water balance is less well simulated,
especially for monthly time step with a PBIAIS greater than 25% in absolute value.

The quantified prediction uncertainty is surprisingly satisfactory (Table 6). At the end of the
daily calibration, the model was able to account for 61% of observed discharge data (65% for monthly
calibration) in a narrow uncertainty band. These results are close to the result of Schuol et al. [14] who
estimated the observed discharge data bracketed by the 95PPU between 60% and 80% for monthly
calibration (40% and 60% for monthly validation). However, one explanation that could be attributed
to the small uncertainty band we obtained is that model predictive uncertainty derived by GLUE
depends largely on the threshold value to separate “behavioral” from “non-behavioral” parameter
sets [63,64].

This means, a high threshold value (as in this case) will generally lead to a narrower uncertainty
band [65–67] but this will be achieved at the cost of bracketing less observed data within the
95PPU band. In addition, GLUE accounts partly for uncertainty due to the possible non-uniqueness
(or equifinality) of parameter sets during calibration and could therefore underestimate total model
uncertainty [68]. For instance, Sellami et al. [69] showed that the GLUE predictive uncertainty band
was larger and surrounded more observation data when uncertainty in the discharge data was
explicitly considered. Engeland and Gottschalk [70] demonstrated that the conceptual water balance
model structural uncertainty was larger than parameter uncertainty. In spite of all the aforementioned
limitations of GLUE, we succeeded in enclosing interestingly most of the observed data within a narrow
uncertainty band (the sought adequate balance between the two indices) hence increasing confidence
in model results. These are encouraging results showing, on one hand, the good performance of
the SWAT model on a large Soudano-Sahelian catchment under limited data and varying climate
conditions and, on the other hand, the capability of observed climate and hydrological input data of
this catchment, even though contested, to provide reliable information about hydro-meteorological
systems prevailing in the region.

It has been also noted that the model did not perform well during the year 1984 particularly (lower
performance and larger uncertainty). This loss of performance can be attributed to the disruption
in rainfall-runoff relationship consequence of consecutive years of drought, which has prevailed in
the beginning of the 80s. The over-predicted PET on the Bani catchment could be attributed to the
Hargreaves method, which could give a greater estimate of PET than it actually is. Ruelland et al. [28]
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applied a temperature-based method given by Oudin et al. [71] and provided a similar estimate of
PET (1723 mm) than the values calculated herein by the Penman and pan evaporation methods hence
corroborating our results. These results demonstrated the valuable of pan evaporation measurements
for estimating PET and that the simple pan evaporation method appears to be suited for application in
the study area and can be used when all the climatic data required by the Penman method are missing.

As far as biomass is concerned, the underestimation of this component in savannah could be
explained by inappropriate specification of all categories in the land use map grid to be modeled
by SWAT as savannah or inaccurate savannah characteristics added in the SWAT database, directly
affecting biomass production such as BIO_E and LAI parameters, among others.

4.2. Impact of Spatial and Temporal Scales on the Model Uncertainty

Results showed that transferring the model parameters from the catchment outlet (Douna) to
the internal gauging stations performs reasonably well only in the case of similarity between donor
and target catchments. The case of catchments controlled by Douna and Pankourou gives a clear
example of such physical proximity where precipitation, soil and land use vary smoothly between both
catchments. However, the SWAT model parameters determined at the outlet could not reproduce well
the measured discharge at Bougouni mainly due to more significant spatial dissimilarities. Bougouni
is indeed situated in a more humid zone and dominated by forest whereas Douna is more arid.
Moreover, it has been demonstrated that the individual calibration at subcatchment scale has led to
a narrower uncertainty band and more observed discharge data enclosed in it, which is the sought
adequate balance between the two indices. Hence, predictive uncertainty was found to decrease
with decreasing spatial scale. This finding can be attributed to the presence of less heterogeneity in
hydrological variables in smaller catchments. These results showed the importance of the calibration of
hydrological models at finer spatial scale to ensure that predominant processes in each subcatchment
are captured, and this is particularly relevant in case of large-area global catchments. Concerning
the effect of temporal scale, we demonstrated that the validation period is characterized by less
predictive uncertainty as opposed to the calibration period. One explanation that can be given is the
fact that 1993-1997 constitutes a more humid period than 1983-1992 and is characterized, therefore,
by less variability in precipitation. In contrast, when moving from daily to monthly calibration, the
uncertainty of the model, in terms of uncertainty band width, increased. This could be attributed
to the cumulative effect of uncertainty in daily discharge data used to compute monthly discharge,
resulting therefore in larger monthly uncertainty. Overall, due to decreasing prediction uncertainty
with decreasing spatial and temporal scales, it is germane to develop on the basin a more efficient
system of hydro-meteorological data collection to account for spatial and temporal variabilities in
hydro-meteorological systems prevailing in the region, especially under changing climate and land
use conditions.

4.3. Advance in Understanding of Hydrological Processes

The GSA confirms what has already been reported on and around the Bani catchment about the
contribution of hydrological processes to streamflow generation. In order to better understand the
origin of flows at Kolondieba (a tributary of the Bani River), Dao et al. [72] showed that Groundwater
contribution to the hydrodynamic equilibrium at the outlet of watershed Kolondieba is small and the
direct flow from the soil surface governs the runoff process. This fact can be explained by the double
impact of a general impoverishment of shallow aquifers due to reduction in precipitation in West
Africa in general since the great drought of the 70s as well as a concurrent increase of the recession
coefficient of the Bani river as demonstrated by Bamba et al. [32] and Mahé [73] with a decrease of
baseflow contribution to total flow in absolute and relative values as corollary.
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4.4. Spatial Performance

The results of different calibration and validation techniques showed varying predictive abilities of
the SWAT model through scales. Firstly, it can be derived from these findings that model performance
in terms of NSE and R2 was higher on the watershed-wide level than on the sub-watershed level.
However, this could be attributed to compensation between positive and negative errors of processes
occurring at a larger scale [74,75]. This suggests that calibrating a model only at the basin outlet
leads to an overconfidence in its performance than at the sub-basin scale. Secondly, individual
calibration of subcatchment processes expectedly improved model accuracy in predicting flows at the
internal gauging stations, due to reducing heterogeneities with downsizing space [76], and is especially
beneficent while the donor and receiver catchments are substantially different. Finally, predictive
uncertainty appears to decrease with reducing spatial scale, but increases with humidity as shown
by the lower performance recorded at Bougouni. The inability of the model to perform during the
validation period at Bougouni could be attributed to the structure of the validation period which is
substantially different to that of calibration, and is solely composed by average to wet years while in
contrast, the occurrence of dry, average, and wet years during the calibration period is noted.

These results have an important role to play in the calibration and validation approaches of
large-area watershed models and constitutes a first step to model parameter regionalization for
prediction in ungauged basins.

Generally speaking, it is well known that in recent decades the Niger River basin has suffered from
a serious degradation of its natural resources, which in turn lead to severe environmental issues. To this
end, different agreements and collaborations on water and climate data sharing have been established
between the 9 countries sharing the basin through different national and international programs.
Thus, the need to reinforce the existing framework of integrated, coordinated, and sustainable water
management strategies in the Bani basin and therefore the Niger River Basin become more urgent
than ever.

Therefore, this study is a step in that long-term direction, where an integrated water management
tool has been developed and validated spatially on the Bani catchment, which allows investigation of
future effects of land use and climate change scenarios on water resources.

5. Conclusions

In this study, the performance of the widely-used SWAT model was evaluated on the Bani
catchment using both split-sample and split-location calibration and validation techniques on daily
and monthly intervals. The model was calibrated at the Douna outlet and at two internal stations.
Freely available global data and daily observed climate and discharge data were used as inputs for
model simulation and calibration. Calibration, validation, uncertainty, and sensitivity analyses were
performed with GLUE within SWAT-CUP. Both graphical and statistical techniques were used for
hydrologic calibration results evaluation. Evapotranspiration and biomass production outputs were
verified and compared to regional values to make sure these components were reasonably predicted.
Sensitivity analysis contributed to a better understanding of the hydrological processes occurring at
the study area.

Final results showed a good SWAT model performance to predict daily as well as monthly
discharge at Douna with acceptable predictive uncertainty despite the poor data density and the
high gradient of climate and land use characterizing the study catchment. However, the daily
calibration resulted in less predictive uncertainty than the monthly calibration. The performance
of the model is somehow lower at an internal sub-catchments level when the global parameter sets are
applied, especially at the one with higher humidity and dominated by forest. However, subcatchment
calibration induced an increase of model performance at intermediate gauging stations as well as
a decrease of total uncertainty. With regard to predicted PET, this component is overestimated by
the model when the Hargreaves method is applied in that specific region while biomass production
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remained low in the savannah land use category. The GSA revealed the predominance of surface and
subsurface processes in the streamflow generation of the Bani River.

Overall, this study has shown the validity of the SWAT model for representing globally
hydrological processes of a large-scale Soudano-Sahelian catchment in West Africa. Given the high
spatial variability of climate, soil, and land use characterizing the catchment, additional calibration
is however needed at subcatchment level to ensure that predominant processes are captured in each
subcatchment. Accordingly, the importance of spatially distributed hydrological measurements
is demonstrated and constitutes the backbone of any type of progress in hydrological process
understanding and modeling. The calibrated SWAT model for the Bani can be used to assess the
current and future impacts of climate and land use change on water resources of the catchment,
increasingly necessary information awaited by water resources managers. Knowing this information,
a strategy of adaptation in response to the current and future impacts can be clearly proposed and
the vulnerability of the population can therefore be reduced. More widely, this impact study can
increase the transferability of the model parameters from the Bani subcatchment to another ungauged
basin with some similarities, and then predicting discharge without the need of any measurement.
These findings are very useful, especially in West Africa, where many river basins are ungauged or
poorly gauged.
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